Picture for Katherine P. Andriole

Katherine P. Andriole

"Name that manufacturer". Relating image acquisition bias with task complexity when training deep learning models: experiments on head CT

Add code
Aug 19, 2020
Figure 1 for "Name that manufacturer". Relating image acquisition bias with task complexity when training deep learning models: experiments on head CT
Figure 2 for "Name that manufacturer". Relating image acquisition bias with task complexity when training deep learning models: experiments on head CT
Figure 3 for "Name that manufacturer". Relating image acquisition bias with task complexity when training deep learning models: experiments on head CT
Figure 4 for "Name that manufacturer". Relating image acquisition bias with task complexity when training deep learning models: experiments on head CT
Viaarxiv icon

DeepAAA: clinically applicable and generalizable detection of abdominal aortic aneurysm using deep learning

Add code
Jul 04, 2019
Figure 1 for DeepAAA: clinically applicable and generalizable detection of abdominal aortic aneurysm using deep learning
Figure 2 for DeepAAA: clinically applicable and generalizable detection of abdominal aortic aneurysm using deep learning
Figure 3 for DeepAAA: clinically applicable and generalizable detection of abdominal aortic aneurysm using deep learning
Figure 4 for DeepAAA: clinically applicable and generalizable detection of abdominal aortic aneurysm using deep learning
Viaarxiv icon

DeepSPINE: Automated Lumbar Vertebral Segmentation, Disc-level Designation, and Spinal Stenosis Grading Using Deep Learning

Add code
Jul 26, 2018
Figure 1 for DeepSPINE: Automated Lumbar Vertebral Segmentation, Disc-level Designation, and Spinal Stenosis Grading Using Deep Learning
Figure 2 for DeepSPINE: Automated Lumbar Vertebral Segmentation, Disc-level Designation, and Spinal Stenosis Grading Using Deep Learning
Figure 3 for DeepSPINE: Automated Lumbar Vertebral Segmentation, Disc-level Designation, and Spinal Stenosis Grading Using Deep Learning
Figure 4 for DeepSPINE: Automated Lumbar Vertebral Segmentation, Disc-level Designation, and Spinal Stenosis Grading Using Deep Learning
Viaarxiv icon