Abstract:The advent of large language models (LLMs) has ushered in a new paradigm of search engines that use generative models to gather and summarize information to answer user queries. This emerging technology, which we formalize under the unified framework of Generative Engines (GEs), has the potential to generate accurate and personalized responses, and is rapidly replacing traditional search engines like Google and Bing. Generative Engines typically satisfy queries by synthesizing information from multiple sources and summarizing them with the help of LLMs. While this shift significantly improves \textit{user} utility and \textit{generative search engine} traffic, it results in a huge challenge for the third stakeholder -- website and content creators. Given the black-box and fast-moving nature of Generative Engines, content creators have little to no control over when and how their content is displayed. With generative engines here to stay, the right tools should be provided to ensure that creator economy is not severely disadvantaged. To address this, we introduce Generative Engine Optimization (GEO), a novel paradigm to aid content creators in improving the visibility of their content in Generative Engine responses through a black-box optimization framework for optimizing and defining visibility metrics. We facilitate systematic evaluation in this new paradigm by introducing GEO-bench, a benchmark of diverse user queries across multiple domains, coupled with sources required to answer these queries. Through rigorous evaluation, we show that GEO can boost visibility by up to 40\% in generative engine responses. Moreover, we show the efficacy of these strategies varies across domains, underscoring the need for domain-specific methods. Our work opens a new frontier in the field of information discovery systems, with profound implications for generative engines and content creators.
Abstract:The study of language emergence aims to understand how human languages are shaped by perceptual grounding and communicative intent. Computational approaches to emergent communication (EC) predominantly consider referential games in limited domains and analyze the learned protocol within the game framework. As a result, it remains unclear how the emergent languages from these settings connect to natural languages or provide benefits in real-world language processing tasks, where statistical models trained on large text corpora dominate. In this work, we propose a novel way to establish such a link by corpus transfer, i.e. pretraining on a corpus of emergent language for downstream natural language tasks, which is in contrast to prior work that directly transfers speaker and listener parameters. Our approach showcases non-trivial transfer benefits for two different tasks -- language modeling and image captioning. For example, in a low-resource setup (modeling 2 million natural language tokens), pre-training on an emergent language corpus with just 2 million tokens reduces model perplexity by $24.6\%$ on average across ten natural languages. We also introduce a novel metric to predict the transferability of an emergent language by translating emergent messages to natural language captions grounded on the same images. We find that our translation-based metric highly correlates with the downstream performance on modeling natural languages (for instance $\rho=0.83$ on Hebrew), while topographic similarity, a popular metric in previous work, shows surprisingly low correlation ($\rho=0.003$), hinting that simple properties like attribute disentanglement from synthetic domains might not capture the full complexities of natural language. Our findings also indicate potential benefits of moving language emergence forward with natural language resources and models.