Abstract:Recent years have witnessed significant progress in large language models' (LLMs) reasoning, which is largely due to the chain-of-thought (CoT) approaches, allowing models to generate intermediate reasoning steps before reaching the final answer. Building on these advances, state-of-the-art LLMs are instruction-tuned to provide long and detailed CoT pathways when responding to reasoning-related questions. However, human beings are naturally cognitive misers and will prompt language models to give rather short responses, thus raising a significant conflict with CoT reasoning. In this paper, we delve into how LLMs' reasoning performance changes when users provide short-path prompts. The results and analysis reveal that language models can reason effectively and robustly without explicit CoT prompts, while under short-path prompting, LLMs' reasoning ability drops significantly and becomes unstable, even on grade-school problems. To address this issue, we propose two approaches: an instruction-guided approach and a fine-tuning approach, both designed to effectively manage the conflict. Experimental results show that both methods achieve high accuracy, providing insights into the trade-off between instruction adherence and reasoning accuracy in current models.
Abstract:Deep neural networks often degrade significantly when training data suffer from class imbalance problems. Existing approaches, e.g., re-sampling and re-weighting, commonly address this issue by rearranging the label distribution of training data to train the networks fitting well to the implicit balanced label distribution. However, most of them hinder the representative ability of learned features due to insufficient use of intra/inter-sample information of training data. To address this issue, we propose meta feature modulator (MFM), a meta-learning framework to model the difference between the long-tailed training data and the balanced meta data from the perspective of representation learning. Concretely, we employ learnable hyper-parameters (dubbed modulation parameters) to adaptively scale and shift the intermediate features of classification networks, and the modulation parameters are optimized together with the classification network parameters guided by a small amount of balanced meta data. We further design a modulator network to guide the generation of the modulation parameters, and such a meta-learner can be readily adapted to train the classification network on other long-tailed datasets. Extensive experiments on benchmark vision datasets substantiate the superiority of our approach on long-tailed recognition tasks beyond other state-of-the-art methods.