Abstract:Virtual Reality (VR) is quickly establishing itself in various industries, including training, education, medicine, and entertainment, in which users are frequently required to carry out multiple complex cognitive and physical activities. However, the relationship between cognitive activities, physical activities, and familiar feelings of cybersickness is not well understood and thus can be unpredictable for developers. Researchers have previously provided labeled datasets for predicting cybersickness while users are stationary, but there have been few labeled datasets on cybersickness while users are physically walking. Thus, from 39 participants, we collected head orientation, head position, eye tracking, images, physiological readings from external sensors, and the self-reported cybersickness severity, physical load, and mental load in VR. Throughout the data collection, participants navigated mazes via real walking and performed tasks challenging their attention and working memory. To demonstrate the dataset's utility, we conducted a case study of training classifiers in which we achieved 95% accuracy for cybersickness severity classification. The noteworthy performance of the straightforward classifiers makes this dataset ideal for future researchers to develop cybersickness detection and reduction models. To better understand the features that helped with classification, we performed SHAP(SHapley Additive exPlanations) analysis, highlighting the importance of eye tracking and physiological measures for cybersickness prediction while walking. This open dataset can allow future researchers to study the connection between cybersickness and cognitive loads and develop prediction models. This dataset will empower future VR developers to design efficient and effective Virtual Environments by improving cognitive load management and minimizing cybersickness.
Abstract:Deep Learning algorithms are often used as black box type learning and they are too complex to understand. The widespread usability of Deep Learning algorithms to solve various machine learning problems demands deep and transparent understanding of the internal representation as well as decision making. Moreover, the learning models, trained on sequential data, such as audio and video data, have intricate internal reasoning process due to their complex distribution of features. Thus, a visual simulator might be helpful to trace the internal decision making mechanisms in response to adversarial input data, and it would help to debug and design appropriate deep learning models. However, interpreting the internal reasoning of deep learning model is not well studied in the literature. In this work, we have developed a visual interactive web application, namely d-DeVIS, which helps to visualize the internal reasoning of the learning model which is trained on the audio data. The proposed system allows to perceive the behavior as well as to debug the model by interactively generating adversarial audio data point. The web application of d-DeVIS is available at ddevis.herokuapp.com.