Abstract:A digital finite impulse response (FIR) filter design is fully synthesizable, thanks to the mature CAD support of digital circuitry. On the contrary, analog mixed-signal (AMS) filter design is mostly a manual process, including architecture selection, schematic design, and layout. This work presents a systematic design methodology to automate AMS FIR filter design using a time approximation architecture without any tunable passive component, such as switched capacitor or resistor. It not only enhances the flexibility of the filter but also facilitates design automation with reduced analog complexity. The proposed design flow features a hybrid approximation scheme that automatically optimize the filter's impulse response in light of time quantization effects, which shows significant performance improvement with minimum designer's efforts in the loop. Additionally, a layout-aware regression model based on an artificial neural network (ANN), in combination with gradient-based search algorithm, is used to automate and expedite the filter design. With the proposed framework, we demonstrate rapid synthesis of AMS FIR filters in 65nm process from specification to layout.
Abstract:Analog mixed-signal (AMS) circuit architecture has evolved towards more digital friendly due to technology scaling and demand for higher flexibility/reconfigurability. Meanwhile, the design complexity and cost of AMS circuits has substantially increased due to the necessity of optimizing the circuit sizing, layout, and verification of a complex AMS circuit. On the other hand, machine learning (ML) algorithms have been under exponential growth over the past decade and actively exploited by the electronic design automation (EDA) community. This paper will identify the opportunities and challenges brought about by this trend and overview several emerging AMS design methodologies that are enabled by the recent evolution of AMS circuit architectures and machine learning algorithms. Specifically, we will focus on using neural-network-based surrogate models to expedite the circuit design parameter search and layout iterations. Lastly, we will demonstrate the rapid synthesis of several AMS circuit examples from specification to silicon prototype, with significantly reduced human intervention.
Abstract:Privacy recently emerges as a severe concern in deep learning, that is, sensitive data must be prohibited from being shared with the third party during deep neural network development. In this paper, we propose Morphed Learning (MoLe), an efficient and secure scheme to deliver deep learning data. MoLe has two main components: data morphing and Augmented Convolutional (Aug-Conv) layer. Data morphing allows data providers to send morphed data without privacy information, while Aug-Conv layer helps deep learning developers to apply their networks on the morphed data without performance penalty. MoLe provides stronger security while introducing lower overhead compared to GAZELLE (USENIX Security 2018), which is another method with no performance penalty on the neural network. When using MoLe for VGG-16 network on CIFAR dataset, the computational overhead is only 9% and the data transmission overhead is 5.12%. As a comparison, GAZELLE has computational overhead of 10,000 times and data transmission overhead of 421,000 times. In this setting, the attack success rate of adversary is 7.9 x 10^{-90} for MoLe and 2.9 x 10^{-30} for GAZELLE, respectively.
Abstract:Computer vision has achieved impressive progress in recent years. Meanwhile, mobile phones have become the primary computing platforms for millions of people. In addition to mobile phones, many autonomous systems rely on visual data for making decisions and some of these systems have limited energy (such as unmanned aerial vehicles also called drones and mobile robots). These systems rely on batteries and energy efficiency is critical. This article serves two main purposes: (1) Examine the state-of-the-art for low-power solutions to detect objects in images. Since 2015, the IEEE Annual International Low-Power Image Recognition Challenge (LPIRC) has been held to identify the most energy-efficient computer vision solutions. This article summarizes 2018 winners' solutions. (2) Suggest directions for research as well as opportunities for low-power computer vision.
Abstract:The Low-Power Image Recognition Challenge (LPIRC, https://rebootingcomputing.ieee.org/lpirc) is an annual competition started in 2015. The competition identifies the best technologies that can classify and detect objects in images efficiently (short execution time and low energy consumption) and accurately (high precision). Over the four years, the winners' scores have improved more than 24 times. As computer vision is widely used in many battery-powered systems (such as drones and mobile phones), the need for low-power computer vision will become increasingly important. This paper summarizes LPIRC 2018 by describing the three different tracks and the winners' solutions.
Abstract:The concern of potential privacy violation has prevented efficient use of big data for improving deep learning based applications. In this paper, we propose Morphed Learning, a privacy-preserving technique for deep learning based on data morphing that, allows data owners to share their data without leaking sensitive privacy information. Morphed Learning allows the data owners to send securely morphed data and provides the server with an Augmented Convolutional layer to train the network on morphed data without performance loss. Morphed Learning has these three features: (1) Strong protection against reverse-engineering on the morphed data; (2) Acceptable computational and data transmission overhead with no correlation to the depth of the neural network; (3) No degradation of the neural network performance. Theoretical analyses on CIFAR-10 dataset and VGG-16 network show that our method is capable of providing 10^89 morphing possibilities with only 5% computational overhead and 10% transmission overhead under limited knowledge attack scenario. Further analyses also proved that our method can offer same resilience against full knowledge attack if more resources are provided.