Frank
Abstract:This paper studies the application of the DDPG algorithm in trajectory-tracking tasks and proposes a trajectorytracking control method combined with Frenet coordinate system. By converting the vehicle's position and velocity information from the Cartesian coordinate system to Frenet coordinate system, this method can more accurately describe the vehicle's deviation and travel distance relative to the center line of the road. The DDPG algorithm adopts the Actor-Critic framework, uses deep neural networks for strategy and value evaluation, and combines the experience replay mechanism and target network to improve the algorithm's stability and data utilization efficiency. Experimental results show that the DDPG algorithm based on Frenet coordinate system performs well in trajectory-tracking tasks in complex environments, achieves high-precision and stable path tracking, and demonstrates its application potential in autonomous driving and intelligent transportation systems. Keywords- DDPG; path tracking; robot navigation
Abstract:Traffic flow prediction is crucial for intelligent transportation systems. It has experienced significant advancements thanks to the power of deep learning in capturing latent patterns of traffic data. However, recent deep-learning architectures require intricate model designs and lack an intuitive understanding of the mapping from input data to predicted results. Achieving both accuracy and interpretability in traffic prediction models remains to be a challenge due to the complexity of traffic data and the inherent opacity of deep learning models. To tackle these challenges, we propose a novel approach, Traffic Flow Prediction LLM (TF-LLM), which leverages large language models (LLMs) to generate interpretable traffic flow predictions. By transferring multi-modal traffic data into natural language descriptions, TF-LLM captures complex spatial-temporal patterns and external factors from comprehensive traffic data. The LLM framework is fine-tuned using language-based instructions to align with spatial-temporal traffic flow data. Empirically, TF-LLM shows competitive accuracy compared with deep learning baselines, while providing intuitive and interpretable predictions. We discuss the spatial-temporal and input dependencies for explainable future flow forecasting, showcasing TF-LLM's potential for diverse city prediction tasks. This paper contributes to advancing explainable traffic prediction models and lays a foundation for future exploration of LLM applications in transportation. To the best of our knowledge, this is the first study to use LLM for interpretable prediction of traffic flow.