Abstract:This study addresses the challenge of integrating social norms into robot navigation, which is essential for ensuring that robots operate safely and efficiently in human-centric environments. Social norms, often unspoken and implicitly understood among people, are difficult to explicitly define and implement in robotic systems. To overcome this, we derive these norms from real human trajectory data, utilizing the comprehensive ATC dataset to identify the minimum social zones humans and robots must respect. These zones are integrated into the robot' navigation system by applying barrier functions, ensuring the robot consistently remains within the designated safety set. Simulation results demonstrate that our system effectively mimics human-like navigation strategies, such as passing on the right side and adjusting speed or pausing in constrained spaces. The proposed framework is versatile, easily comprehensible, and tunable, demonstrating the potential to advance the development of robots designed to navigate effectively in human-centric environments.
Abstract:Controlling marine vehicles in challenging environments is a complex task due to the presence of nonlinear hydrodynamics and uncertain external disturbances. Despite nonlinear model predictive control (MPC) showing potential in addressing these issues, its practical implementation is often constrained by computational limitations. In this paper, we propose an efficient controller for trajectory tracking of marine vehicles by employing a convex error-state MPC on the Lie group. By leveraging the inherent geometric properties of the Lie group, we can construct globally valid error dynamics and formulate a quadratic programming-based optimization problem. Our proposed MPC demonstrates effectiveness in trajectory tracking through extensive-numerical simulations, including scenarios involving ocean currents. Notably, our method substantially reduces computation time compared to nonlinear MPC, making it well-suited for real-time control applications with long prediction horizons or involving small marine vehicles.