Abstract:Although several datasets annotated for anaphoric reference/coreference exist, even the largest such datasets have limitations in terms of size, range of domains, coverage of anaphoric phenomena, and size of documents included. Yet, the approaches proposed to scale up anaphoric annotation haven't so far resulted in datasets overcoming these limitations. In this paper, we introduce a new release of a corpus for anaphoric reference labelled via a game-with-a-purpose. This new release is comparable in size to the largest existing corpora for anaphoric reference due in part to substantial activity by the players, in part thanks to the use of a new resolve-and-aggregate paradigm to 'complete' markable annotations through the combination of an anaphoric resolver and an aggregation method for anaphoric reference. The proposed method could be adopted to greatly speed up annotation time in other projects involving games-with-a-purpose. In addition, the corpus covers genres for which no comparable size datasets exist (Fiction and Wikipedia); it covers singletons and non-referring expressions; and it includes a substantial number of long documents (> 2K in length).
Abstract:Anaphoric reference is an aspect of language interpretation covering a variety of types of interpretation beyond the simple case of identity reference to entities introduced via nominal expressions covered by the traditional coreference task in its most recent incarnation in ONTONOTES and similar datasets. One of these cases that go beyond simple coreference is anaphoric reference to entities that must be added to the discourse model via accommodation, and in particular split-antecedent references to entities constructed out of other entities, as in split-antecedent plurals and in some cases of discourse deixis. Although this type of anaphoric reference is now annotated in many datasets, systems interpreting such references cannot be evaluated using the Reference coreference scorer Pradhan et al. (2014). As part of the work towards a new scorer for anaphoric reference able to evaluate all aspects of anaphoric interpretation in the coverage of the Universal Anaphora initiative, we propose in this paper a solution to the technical problem of generalizing existing metrics for identity anaphora so that they can also be used to score cases of split-antecedents. This is the first such proposal in the literature on anaphora or coreference, and has been successfully used to score both split-antecedent plural references and discourse deixis in the recent CODI/CRAC anaphora resolution in dialogue shared tasks.
Abstract:The state-of-the-art on basic, single-antecedent anaphora has greatly improved in recent years. Researchers have therefore started to pay more attention to more complex cases of anaphora such as split-antecedent anaphora, as in Time-Warner is considering a legal challenge to Telecommunications Inc's plan to buy half of Showtime Networks Inc-a move that could lead to all-out war between the two powerful companies. Split-antecedent anaphora is rarer and more complex to resolve than single-antecedent anaphora; as a result, it is not annotated in many datasets designed to test coreference, and previous work on resolving this type of anaphora was carried out in unrealistic conditions that assume gold mentions and/or gold split-antecedent anaphors are available. These systems also focus on split-antecedent anaphors only. In this work, we introduce a system that resolves both single and split-antecedent anaphors, and evaluate it in a more realistic setting that uses predicted mentions. We also start addressing the question of how to evaluate single and split-antecedent anaphors together using standard coreference evaluation metrics.
Abstract:No neural coreference resolver for Arabic exists, in fact we are not aware of any learning-based coreference resolver for Arabic since (Bjorkelund and Kuhn, 2014). In this paper, we introduce a coreference resolution system for Arabic based on Lee et al's end to end architecture combined with the Arabic version of bert and an external mention detector. As far as we know, this is the first neural coreference resolution system aimed specifically to Arabic, and it substantially outperforms the existing state of the art on OntoNotes 5.0 with a gain of 15.2 points conll F1. We also discuss the current limitations of the task for Arabic and possible approaches that can tackle these challenges.
Abstract:Now that the performance of coreference resolvers on the simpler forms of anaphoric reference has greatly improved, more attention is devoted to more complex aspects of anaphora. One limitation of virtually all coreference resolution models is the focus on single-antecedent anaphors. Plural anaphors with multiple antecedents-so-called split-antecedent anaphors (as in John met Mary. They went to the movies) have not been widely studied, because they are not annotated in ONTONOTES and are relatively infrequent in other corpora. In this paper, we introduce the first model for unrestricted resolution of split-antecedent anaphors. We start with a strong baseline enhanced by BERT embeddings, and show that we can substantially improve its performance by addressing the sparsity issue. To do this, we experiment with auxiliary corpora where split-antecedent anaphors were annotated by the crowd, and with transfer learning models using element-of bridging references and single-antecedent coreference as auxiliary tasks. Evaluation on the gold annotated ARRAU corpus shows that the out best model uses a combination of three auxiliary corpora achieved F1 scores of 70% and 43.6% when evaluated in a lenient and strict setting, respectively, i.e., 11 and 21 percentage points gain when compared with our baseline.
Abstract:Named Entity Recognition (NER) is a fundamental task in Natural Language Processing, concerned with identifying spans of text expressing references to entities. NER research is often focused on flat entities only (flat NER), ignoring the fact that entity references can be nested, as in [Bank of [China]] (Finkel and Manning, 2009). In this paper, we use ideas from graph-based dependency parsing to provide our model a global view on the input via a biaffine model (Dozat and Manning, 2017). The biaffine model scores pairs of start and end tokens in a sentence which we use to explore all spans, so that the model is able to predict named entities accurately. We show that the model works well for both nested and flat NER through evaluation on 8 corpora and achieving SoTA performance on all of them, with accuracy gains of up to 2.2 percentage points.
Abstract:We propose a multi task learning-based neural model for bridging reference resolution tackling two key challenges faced by bridging reference resolution. The first challenge is the lack of large corpora annotated with bridging references. To address this, we use multi-task learning to help bridging reference resolution with coreference resolution. We show that substantial improvements of up to 8 p.p. can be achieved on full bridging resolution with this architecture. The second challenge is the different definitions of bridging used in different corpora, meaning that hand-coded systems or systems using special features designed for one corpus do not work well with other corpora. Our neural model only uses a small number of corpus independent features, thus can be applied easily to different corpora. Evaluations with very different bridging corpora (ARRAU, ISNOTES, BASHI and SCICORP) suggest that our architecture works equally well on all corpora, and achieves the SoTA results on full bridging resolution for all corpora, outperforming the best reported results by up to 34.9 percentage points.
Abstract:Anaphora resolution (coreference) systems designed for the CONLL 2012 dataset typically cannot handle key aspects of the full anaphora resolution task such as the identification of singletons and of certain types of non-referring expressions (e.g., expletives), as these aspects are not annotated in that corpus. However, the recently released dataset for the CRAC 2018 Shared Task can now be used for that purpose. In this paper, we introduce an architecture to simultaneously identify non-referring expressions (including expletives, predicative {\NP}s, and other types) and build coreference chains, including singletons. Our cluster-ranking system uses an attention mechanism to determine the relative importance of the mentions in the same cluster. Additional classifiers are used to identify singletons and non-referring markables. Our contributions are as follows. First all, we report the first result on the CRAC data using system mentions; our result is 5.8% better than the shared task baseline system, which used gold mentions. Second, we demonstrate that the availability of singleton clusters and non-referring expressions can lead to substantially improved performance on non-singleton clusters as well. Third, we show that despite our model not being designed specifically for the CONLL data, it achieves a score equivalent to that of the state-of-the-art system by Kantor and Globerson (2019) on that dataset.
Abstract:Mention detection is an important aspect of the annotation task and interpretation process for applications such as coreference resolution. In this work, we propose and compare three neural network-based approaches to mention detection. The first approach is based on the mention detection part of a state-of-the-art coreference resolution system; the second uses ELMo embeddings together with a bidirectional LSTM and a biaffine classifier; the third approach uses the recently introduced BERT model. Our best model (using a biaffine classifier) achieved gains of up to 1.8 percentage points on mention recall when compared with a strong baseline in a HIGH RECALL setting. The same model achieved improvements of up to 5.3 and 6.5 p.p. when compared with the best-reported mention detection F1 on thevCONLL and CRAC data sets respectively in a HIGH F1 setting. We further evaluated our models on coreference resolution by using mentions predicted by our best model in the start-of-the-art coreference systems. The enhanced model achieved absolute improvements of up to 1.7 and 0.7 p.p. when compared with the best pipeline system and the state-of-the-art end-to-end system respectively.
Abstract:In this paper, we present an approach to improve the accuracy of a strong transition-based dependency parser by exploiting dependency language models that are extracted from a large parsed corpus. We integrated a small number of features based on the dependency language models into the parser. To demonstrate the effectiveness of the proposed approach, we evaluate our parser on standard English and Chinese data where the base parser could achieve competitive accuracy scores. Our enhanced parser achieved state-of-the-art accuracy on Chinese data and competitive results on English data. We gained a large absolute improvement of one point (UAS) on Chinese and 0.5 points for English.