Abstract:In this paper, we introduce a novel multi-objective optimization algorithm, the Multi-Objective Mobile Damped Wave Algorithm (MOMDWA), specifically designed to address complex quantum control problems. Our approach extends the capabilities of the original Mobile Damped Wave Algorithm (MDWA) by incorporating multiple objectives, enabling a more comprehensive optimization process. We applied MOMDWA to three quantum control scenarios, focusing on optimizing the balance between control fidelity, energy consumption, and control smoothness. The results demonstrate that MOMDWA significantly enhances quantum control efficiency and robustness, achieving high fidelity while minimizing energy use and ensuring smooth control pulses. This advancement offers a valuable tool for quantum computing and other domains requiring precise, multi-objective control.
Abstract:In this paper, a time series algorithm based on Genetic Algorithm (GA) and Long Short-Term Memory Network (LSTM) optimization is used to forecast stock prices effectively, taking into account the trend of the big data era. The data are first analyzed by descriptive statistics, and then the model is built and trained and tested on the dataset. After optimization and adjustment, the mean absolute error (MAE) of the model gradually decreases from 0.11 to 0.01 and tends to be stable, indicating that the model prediction effect is gradually close to the real value. The results on the test set show that the time series algorithm optimized based on Genetic Algorithm (GA)-Long Short-Term Memory Network (LSTM) is able to accurately predict the stock prices, and is highly consistent with the actual price trends and values, with strong generalization ability. The MAE on the test set is 2.41, the MSE is 9.84, the RMSE is 3.13, and the R2 is 0.87. This research result not only provides a novel stock price prediction method, but also provides a useful reference for financial market analysis using computer technology and big data.