Abstract:In the past few decades, the rapid development of information and internet technologies has spawned massive amounts of data and information. The information explosion drives many enterprises or individuals to seek to rent cloud computing infrastructure to put their applications in the cloud. However, the agreements reached between cloud computing providers and clients are often not efficient. Many factors affect the efficiency, such as the idleness of the providers' cloud computing infrastructure, and the additional cost to the clients. One possible solution is to introduce a comprehensive, bargaining game (a type of negotiation), and schedule resources according to the negotiation results. We propose an agent-based auto-negotiation system for resource scheduling based on fuzzy logic. The proposed method can complete a one-to-one auto-negotiation process and generate optimal offers for the provider and client. We compare the impact of different member functions, fuzzy rule sets, and negotiation scenario cases on the offers to optimize the system. It can be concluded that our proposed method can utilize resources more efficiently and is interpretable, highly flexible, and customizable. We successfully train machine learning models to replace the fuzzy negotiation system to improve processing speed. The article also highlights possible future improvements to the proposed system and machine learning models. All the codes and data are available in the open-source repository.
Abstract:Misuse of the Large Language Models (LLMs) has raised widespread concern. To address this issue, safeguards have been taken to ensure that LLMs align with social ethics. However, recent findings have revealed an unsettling vulnerability bypassing the safeguards of LLMs, known as jailbreak attacks. By applying techniques, such as employing role-playing scenarios, adversarial examples, or subtle subversion of safety objectives as a prompt, LLMs can produce an inappropriate or even harmful response. While researchers have studied several categories of jailbreak attacks, they have done so in isolation. To fill this gap, we present the first large-scale measurement of various jailbreak attack methods. We concentrate on 13 cutting-edge jailbreak methods from four categories, 160 questions from 16 violation categories, and six popular LLMs. Our extensive experimental results demonstrate that the optimized jailbreak prompts consistently achieve the highest attack success rates, as well as exhibit robustness across different LLMs. Some jailbreak prompt datasets, available from the Internet, can also achieve high attack success rates on many LLMs, such as ChatGLM3, GPT-3.5, and PaLM2. Despite the claims from many organizations regarding the coverage of violation categories in their policies, the attack success rates from these categories remain high, indicating the challenges of effectively aligning LLM policies and the ability to counter jailbreak attacks. We also discuss the trade-off between the attack performance and efficiency, as well as show that the transferability of the jailbreak prompts is still viable, becoming an option for black-box models. Overall, our research highlights the necessity of evaluating different jailbreak methods. We hope our study can provide insights for future research on jailbreak attacks and serve as a benchmark tool for evaluating them for practitioners.
Abstract:In recent times, significant advancements have been made in the field of large language models (LLMs), represented by GPT series models. To optimize task execution, users often engage in multi-round conversations with GPT models hosted in cloud environments. These multi-round conversations, potentially replete with private information, require transmission and storage within the cloud. However, this operational paradigm introduces additional attack surfaces. In this paper, we first introduce a specific Conversation Reconstruction Attack targeting GPT models. Our introduced Conversation Reconstruction Attack is composed of two steps: hijacking a session and reconstructing the conversations. Subsequently, we offer an exhaustive evaluation of the privacy risks inherent in conversations when GPT models are subjected to the proposed attack. However, GPT-4 demonstrates certain robustness to the proposed attacks. We then introduce two advanced attacks aimed at better reconstructing previous conversations, specifically the UNR attack and the PBU attack. Our experimental findings indicate that the PBU attack yields substantial performance across all models, achieving semantic similarity scores exceeding 0.60, while the UNR attack is effective solely on GPT-3.5. Our results reveal the concern about privacy risks associated with conversations involving GPT models and aim to draw the community's attention to prevent the potential misuse of these models' remarkable capabilities. We will responsibly disclose our findings to the suppliers of related large language models.