Abstract:Accurate quantification of metabolites in magnetic resonance spectroscopy (MRS) is challenged by low signal-to-noise ratio (SNR), overlapping metabolites, and various artifacts. Particularly, unknown and unparameterized baseline effects obscure the quantification of low-concentration metabolites, limiting MRS reliability. This paper introduces wavelet analysis-based neural decomposition (WAND), a novel data-driven method designed to decompose MRS signals into their constituent components: metabolite-specific signals, baseline, and artifacts. WAND takes advantage of the enhanced separability of these components within the wavelet domain. The method employs a neural network, specifically a U-Net architecture, trained to predict masks for wavelet coefficients obtained through the continuous wavelet transform. These masks effectively isolate desired signal components in the wavelet domain, which are then inverse-transformed to obtain separated signals. Notably, an artifact mask is created by inverting the sum of all known signal masks, enabling WAND to capture and remove even unpredictable artifacts. The effectiveness of WAND in achieving accurate decomposition is demonstrated through numerical evaluations using simulated spectra. Furthermore, WAND's artifact removal capabilities significantly enhance the quantification accuracy of linear combination model fitting. The method's robustness is further validated using data from the 2016 MRS Fitting Challenge and in-vivo experiments.
Abstract:Change point detection (CPD) and anomaly detection (AD) are essential techniques in various fields to identify abrupt changes or abnormal data instances. However, existing methods are often constrained to univariate data, face scalability challenges with large datasets due to computational demands, and experience reduced performance with high-dimensional or intricate data, as well as hidden anomalies. Furthermore, they often lack interpretability and adaptability to domain-specific knowledge, which limits their versatility across different fields. In this work, we propose a deep learning-based CPD/AD method called Probabilistic Predictive Coding (PPC) that jointly learns to encode sequential data to low dimensional latent space representations and to predict the subsequent data representations as well as the corresponding prediction uncertainties. The model parameters are optimized with maximum likelihood estimation by comparing these predictions with the true encodings. At the time of application, the true and predicted encodings are used to determine the probability of conformity, an interpretable and meaningful anomaly score. Furthermore, our approach has linear time complexity, scalability issues are prevented, and the method can easily be adjusted to a wide range of data types and intricate applications. We demonstrate the effectiveness and adaptability of our proposed method across synthetic time series experiments, image data, and real-world magnetic resonance spectroscopic imaging data.
Abstract:This work proposes a method to accelerate the acquisition of high-quality edited magnetic resonance spectroscopy (MRS) scans using machine learning models taking the sample covariance matrix as input. The method is invariant to the number of transients and robust to noisy input data for both synthetic as well as in-vivo scenarios.
Abstract:Direction of arrival (DoA) estimation is a fundamental task in array processing. A popular family of DoA estimation algorithms are subspace methods, which operate by dividing the measurements into distinct signal and noise subspaces. Subspace methods, such as Multiple Signal Classification (MUSIC) and Root-MUSIC, rely on several restrictive assumptions, including narrowband non-coherent sources and fully calibrated arrays, and their performance is considerably degraded when these do not hold. In this work we propose SubspaceNet; a data-driven DoA estimator which learns how to divide the observations into distinguishable subspaces. This is achieved by utilizing a dedicated deep neural network to learn the empirical autocorrelation of the input, by training it as part of the Root-MUSIC method, leveraging the inherent differentiability of this specific DoA estimator, while removing the need to provide a ground-truth decomposable autocorrelation matrix. Once trained, the resulting SubspaceNet serves as a universal surrogate covariance estimator that can be applied in combination with any subspace-based DoA estimation method, allowing its successful application in challenging setups. SubspaceNet is shown to enable various DoA estimation algorithms to cope with coherent sources, wideband signals, low SNR, array mismatches, and limited snapshots, while preserving the interpretability and the suitability of classic subspace methods.
Abstract:Direction of arrival (DoA) estimation is a crucial task in sensor array signal processing, giving rise to various successful model-based (MB) algorithms as well as recently developed data-driven (DD) methods. This paper introduces a new hybrid MB/DD DoA estimation architecture, based on the classical multiple signal classification (MUSIC) algorithm. Our approach augments crucial aspects of the original MUSIC structure with specifically designed neural architectures, allowing it to overcome certain limitations of the purely MB method, such as its inability to successfully localize coherent sources. The deep augmented MUSIC algorithm is shown to outperform its unaltered version with a superior resolution.