Abstract:We present Soda (Symbolic Objective Descriptive Analysis), a language that helps to treat qualities and quantities in a natural way and greatly simplifies the task of checking their correctness. We present key properties for the language motivated by the design of a descriptive language to encode complex requirements on computer systems, and we explain how these key properties must be addressed to model these requirements with simple definitions. We give an overview of a tool that helps to describe problems in an easy way that we consider more transparent and less error-prone.
Abstract:Fairness is central to the ethical and responsible development and use of AI systems, with a large number of frameworks and formal notions of algorithmic fairness being available. However, many of the fairness solutions proposed revolve around technical considerations and not the needs of and consequences for the most impacted communities. We therefore want to take the focus away from definitions and allow for the inclusion of societal and relational aspects to represent how the effects of AI systems impact and are experienced by individuals and social groups. In this paper, we do this by means of proposing the ACROCPoLis framework to represent allocation processes with a modeling emphasis on fairness aspects. The framework provides a shared vocabulary in which the factors relevant to fairness assessments for different situations and procedures are made explicit, as well as their interrelationships. This enables us to compare analogous situations, to highlight the differences in dissimilar situations, and to capture differing interpretations of the same situation by different stakeholders.