Abstract:Medical image translation is the process of converting from one imaging modality to another, in order to reduce the need for multiple image acquisitions from the same patient. This can enhance the efficiency of treatment by reducing the time, equipment, and labor needed. In this paper, we introduce a multi-resolution guided Generative Adversarial Network (GAN)-based framework for 3D medical image translation. Our framework uses a 3D multi-resolution Dense-Attention UNet (3D-mDAUNet) as the generator and a 3D multi-resolution UNet as the discriminator, optimized with a unique combination of loss functions including voxel-wise GAN loss and 2.5D perception loss. Our approach yields promising results in volumetric image quality assessment (IQA) across a variety of imaging modalities, body regions, and age groups, demonstrating its robustness. Furthermore, we propose a synthetic-to-real applicability assessment as an additional evaluation to assess the effectiveness of synthetic data in downstream applications such as segmentation. This comprehensive evaluation shows that our method produces synthetic medical images not only of high-quality but also potentially useful in clinical applications. Our code is available at github.com/juhha/3D-mADUNet.
Abstract:This study introduces the 3D Residual-in-Residual Dense Block GAN (3D RRDB-GAN) for 3D super-resolution for radiology imagery. A key aspect of 3D RRDB-GAN is the integration of a 2.5D perceptual loss function, which contributes to improved volumetric image quality and realism. The effectiveness of our model was evaluated through 4x super-resolution experiments across diverse datasets, including Mice Brain MRH, OASIS, HCP1200, and MSD-Task-6. These evaluations, encompassing both quantitative metrics like LPIPS and FID and qualitative assessments through sample visualizations, demonstrate the models effectiveness in detailed image analysis. The 3D RRDB-GAN offers a significant contribution to medical imaging, particularly by enriching the depth, clarity, and volumetric detail of medical images. Its application shows promise in enhancing the interpretation and analysis of complex medical imagery from a comprehensive 3D perspective.