Abstract:Most of medical developments require the ability to identify samples that are anomalous with respect to a target group or control group, in the sense they could belong to a new, previously unseen class or are not class data. In this case when there are not enough data to train two-class One-class classification appear like an available solution. On the other hand non-linear approaches could give very useful information. The aim of our project is to contribute to earlier diagnosis of AD and better estimates of its severity by using automatic analysis performed through new biomarkers extracted from speech signal. The methods selected in this case are speech biomarkers oriented to Spontaneous Speech and Emotional Response Analysis. In this approach One-class classifiers and two-class classifiers are analyzed. The use of information about outlier and Fractal Dimension features improves the system performance.
Abstract:The ageing process may lead to cognitive and physical impairments, which may affect elderly everyday life. In recent years, the use of Brain Computer Interfaces (BCIs) based on Electroencephalography (EEG) has revealed to be particularly effective to promote and enhance rehabilitation procedures, especially by exploiting motor imagery experimental paradigms. Moreover, BCIs seem to increase patients' engagement and have proved to be reliable tools for elderly overall wellness improvement. However, EEG signals usually present a low signal-to-noise ratio and can be recorded for a limited time. Thus, irrelevant information and faulty samples could affect the BCI performance. Introducing a methodology that allows the extraction of informative components from the EEG signal while maintaining its intrinsic characteristics, may provide a solution to both the described issues: noisy data may be avoided by having only relevant components and combining relevant components may represent a good strategy to substitute the data without requiring long or repeated EEG recordings. Moreover, substituting faulty trials may significantly improve the classification performances of a BCI when translating imagined movement to rehabilitation systems. To this end, in this work the EEG signal decomposition by means of multivariate empirical mode decomposition is proposed to obtain its oscillatory modes, called Intrinsic Mode Functions (IMFs). Subsequently, a novel procedure for relevant IMF selection criterion based on the IMF time-frequency representation and entropy is provided. After having verified the reliability of the EEG signal reconstruction with the relevant IMFs only, the relevant IMFs are combined to produce new artificial data and provide new samples to use for BCI training.
Abstract:Empirical mode decomposition (EMD) has developed into a prominent tool for adaptive, scale-based signal analysis in various fields like robotics, security and biomedical engineering. Since the dramatic increase in amount of data puts forward higher requirements for the capability of real-time signal analysis, it is difficult for existing EMD and its variants to trade off the growth of data dimension and the speed of signal analysis. In order to decompose multi-dimensional signals at a faster speed, we present a novel signal-serialization method (serial-EMD), which concatenates multi-variate or multi-dimensional signals into a one-dimensional signal and uses various one-dimensional EMD algorithms to decompose it. To verify the effects of the proposed method, synthetic multi-variate time series, artificial 2D images with various textures and real-world facial images are tested. Compared with existing multi-EMD algorithms, the decomposition time becomes significantly reduced. In addition, the results of facial recognition with Intrinsic Mode Functions (IMFs) extracted using our method can achieve a higher accuracy than those obtained by existing multi-EMD algorithms, which demonstrates the superior performance of our method in terms of the quality of IMFs. Furthermore, this method can provide a new perspective to optimize the existing EMD algorithms, that is, transforming the structure of the input signal rather than being constrained by developing envelope computation techniques or signal decomposition methods. In summary, the study suggests that the serial-EMD technique is a highly competitive and fast alternative for multi-dimensional signal analysis.
Abstract:Handling correctly incomplete datasets in machine learning is a fundamental and classical challenge. In this paper, the problem of training a classifier on a dataset with missing features, and its application to a complete or incomplete test dataset, is addressed. A supervised learning method is developed to train a general classifier, such as a logistic regression or a deep neural network, using only a limited number of features per sample, while assuming sparse representations of data vectors on an unknown dictionary. The pattern of missing features is allowed to be different for each input data instance and can be either random or structured. The proposed method simultaneously learns the classifier, the dictionary and the corresponding sparse representation of each input data sample. A theoretical analysis is provided, comparing this method with the standard imputation approach, which consists of performing data completion followed by training the classifier with those reconstructions. Sufficient conditions are identified such that, if it is possible to train a classifier on incomplete observations so that their reconstructions are well separated by a hyperplane, then the same classifier also correctly separates the original (unobserved) data samples. Extensive simulation results on synthetic and well-known reference datasets are presented that validate our theoretical findings and demonstrate the effectiveness of the proposed method compared to traditional data imputation approaches and one state of the art algorithm.