Abstract:We demonstrate a robot-assisted feeding system that enables people with mobility impairments to feed themselves. Our system design embodies Safety, Portability, and User Control, with comprehensive full-stack safety checks, the ability to be mounted on and powered by any powered wheelchair, and a custom web-app allowing care-recipients to leverage their own assistive devices for robot control. For bite acquisition, we leverage multi-modal online learning to tractably adapt to unseen food types. For bite transfer, we leverage real-time mouth perception and interaction-aware control. Co-designed with community researchers, our system has been validated through multiple end-user studies.
Abstract:We present an application of hierarchical Bayesian estimation to robot map building. The revisiting problem occurs when a robot has to decide whether it is seeing a previously-built portion of a map, or is exploring new territory. This is a difficult decision problem, requiring the probability of being outside of the current known map. To estimate this probability, we model the structure of a "typical" environment as a hidden Markov model that generates sequences of views observed by a robot navigating through the environment. A Dirichlet prior over structural models is learned from previously explored environments. Whenever a robot explores a new environment, the posterior over the model is estimated by Dirichlet hyperparameters. Our approach is implemented and tested in the context of multi-robot map merging, a particularly difficult instance of the revisiting problem. Experiments with robot data show that the technique yields strong improvements over alternative methods.