Abstract:There is growing evidence regarding the importance of spike timing in neural information processing, with even a small number of spikes carrying information, but computational models lag significantly behind those for rate coding. Experimental evidence on neuronal behavior is consistent with the dynamical and state dependent behavior provided by recurrent connections. This motivates the minimalistic abstraction investigated in this paper, aimed at providing insight into information encoding in spike timing via recurrent connections. We employ information-theoretic techniques for a simple reservoir model which encodes input spatiotemporal patterns into a sparse neural code, translating the polychronous groups introduced by Izhikevich into codewords on which we can perform standard vector operations. We show that the distance properties of the code are similar to those for (optimal) random codes. In particular, the code meets benchmarks associated with both linear classification and capacity, with the latter scaling exponentially with reservoir size.
Abstract:Research evidence in Cyber-Physical Systems (CPS) shows that the introduced tight coupling of information technology with physical sensing and actuation leads to more vulnerability and security weaknesses. But, the traditional security protection mechanisms of CPS focus on data encryption while neglecting the sensors which are vulnerable to attacks in the physical domain. Accordingly, researchers attach utmost importance to the problem of state estimation in the presence of sensor attacks. In this work, we present SecSens, a novel approach for secure nonlinear state estimation in the presence of modeling and measurement noise. SecSens consists of two independent algorithms, namely, SecEKF and SecOPT, which are based on Extended Kalman Filter and Maximum Likelihood Estimation, respectively. We adopt a holistic approach to introduce security awareness among state estimation algorithms without requiring specialized hardware, or cryptographic techniques. We apply SecSens to securely localize and time synchronize networked mobile devices. SecSens provides good performance at run-time several order of magnitude faster than the state of art solutions under the presence of powerful attacks. Our algorithms are evaluated on a testbed with static nodes and a mobile quadrotor all equipped with commercial ultra-wide band wireless devices.
Abstract:Through the last decade, we have witnessed a surge of Internet of Things (IoT) devices, and with that a greater need to choreograph their actions across both time and space. Although these two problems, namely time synchronization and localization, share many aspects in common, they are traditionally treated separately or combined on centralized approaches that results in an ineffcient use of resources, or in solutions that are not scalable in terms of the number of IoT devices. Therefore, we propose D-SLATS, a framework comprised of three different and independent algorithms to jointly solve time synchronization and localization problems in a distributed fashion. The First two algorithms are based mainly on the distributed Extended Kalman Filter (EKF) whereas the third one uses optimization techniques. No fusion center is required, and the devices only communicate with their neighbors. The proposed methods are evaluated on custom Ultra-Wideband communication Testbed and a quadrotor, representing a network of both static and mobile nodes. Our algorithms achieve up to three microseconds time synchronization accuracy and 30 cm localization error.
Abstract:This work introduces the one-class slab SVM (OCSSVM), a one-class classifier that aims at improving the performance of the one-class SVM. The proposed strategy reduces the false positive rate and increases the accuracy of detecting instances from novel classes. To this end, it uses two parallel hyperplanes to learn the normal region of the decision scores of the target class. OCSSVM extends one-class SVM since it can scale and learn non-linear decision functions via kernel methods. The experiments on two publicly available datasets show that OCSSVM can consistently outperform the one-class SVM and perform comparable to or better than other state-of-the-art one-class classifiers.