Abstract:Behavioral experiments on the ultimatum game (UG) reveal that we humans prefer fair acts, which contradicts the prediction made in orthodox Economics. Existing explanations, however, are mostly attributed to exogenous factors within the imitation learning framework. Here, we adopt the reinforcement learning paradigm, where individuals make their moves aiming to maximize their accumulated rewards. Specifically, we apply Q-learning to UG, where each player is assigned two Q-tables to guide decisions for the roles of proposer and responder. In a two-player scenario, fairness emerges prominently when both experiences and future rewards are appreciated. In particular, the probability of successful deals increases with higher offers, which aligns with observations in behavioral experiments. Our mechanism analysis reveals that the system undergoes two phases, eventually stabilizing into fair or rational strategies. These results are robust when the rotating role assignment is replaced by a random or fixed manner, or the scenario is extended to a latticed population. Our findings thus conclude that the endogenous factor is sufficient to explain the emergence of fairness, exogenous factors are not needed.
Abstract:Molecular conformation generation poses a significant challenge in the field of computational chemistry. Recently, Diffusion Probabilistic Models (DPMs) and Score-Based Generative Models (SGMs) are effectively used due to their capacity for generating accurate conformations far beyond conventional physics-based approaches. However, the discrepancy between training and inference rises a critical problem known as the exposure bias. While this issue has been extensively investigated in DPMs, the existence of exposure bias in SGMs and its effective measurement remain unsolved, which hinders the use of compensation methods for SGMs, including ConfGF and Torsional Diffusion as the representatives. In this work, we first propose a method for measuring exposure bias in SGMs used for molecular conformation generation, which confirms the significant existence of exposure bias in these models and measures its value. We design a new compensation algorithm Input Perturbation (IP), which is adapted from a method originally designed for DPMs only. Experimental results show that by introducing IP, SGM-based molecular conformation models can significantly improve both the accuracy and diversity of the generated conformations. Especially by using the IP-enhanced Torsional Diffusion model, we achieve new state-of-the-art performance on the GEOM-Drugs dataset and are on par on GEOM-QM9. We provide the code publicly at https://github.com/jia-975/torsionalDiff-ip.
Abstract:Graph Contrastive Learning (GCL) seeks to learn nodal or graph representations that contain maximal consistent information from graph-structured data. While node-level contrasting modes are dominating, some efforts commence to explore consistency across different scales. Yet, they tend to lose consistent information and be contaminated by disturbing features. Here, we introduce MUX-GCL, a novel cross-scale contrastive learning paradigm that utilizes multiplex representations as effective patches. While this learning mode minimizes contaminating noises, a commensurate contrasting strategy using positional affinities further avoids information loss by correcting false negative pairs across scales. Extensive downstream experiments demonstrate that MUX-GCL yields multiple state-of-the-art results on public datasets. Our theoretical analysis further guarantees the new objective function as a stricter lower bound of mutual information of raw input features and output embeddings, which rationalizes this paradigm. Code is available at https://github.com/MUX-GCL/Code.
Abstract:In recent years, with the rapid development of graph neural networks (GNN), more and more graph datasets have been published for GNN tasks. However, when an upstream data owner publishes graph data, there are often many privacy concerns, because many real-world graph data contain sensitive information like person's friend list. Differential privacy (DP) is a common method to protect privacy, but due to the complex topological structure of graph data, applying DP on graphs often affects the message passing and aggregation of GNN models, leading to a decrease in model accuracy. In this paper, we propose a novel graph edge protection framework, graph publisher (GraphPub), which can protect graph topology while ensuring that the availability of data is basically unchanged. Through reverse learning and the encoder-decoder mechanism, we search for some false edges that do not have a large negative impact on the aggregation of node features, and use them to replace some real edges. The modified graph will be published, which is difficult to distinguish between real and false data. Sufficient experiments prove that our framework achieves model accuracy close to the original graph with an extremely low privacy budget.
Abstract:Efficient allocation is important in nature and human society where individuals often compete for finite resources. The Minority Game is perhaps the simplest model that provides deep insights into how human coordinate to maximize the resource utilization. However, this model assumes the static strategies that are provided a priori, failing to capture their adaptive nature. Here, we turn to the paradigm of reinforcement learning, where individuals' strategies are evolving by evaluating both the past experience and rewards in the future. Specifically, we adopt the Q-learning algorithm, each player is endowed with a Q-table that guides their decision-making. We reveal that the population is able to reach the optimal allocation when individuals appreciate both the past experience and rewards in the future, and they are able to balance the exploitation of their Q-tables and the exploration by randomly acting. The optimal allocation is ruined when individuals tend to use either exploitation-only or exploration-only, where only partial coordination and even anti-coordination are observed. Mechanism analysis reveals that a moderate level of exploration can escape local minimums of metastable periodic states, and reaches the optimal coordination as the global minimum. Interestingly, the optimal coordination is underlined by a symmetry-breaking of action preferences, where nearly half of the population choose one side while the other half prefer the other side. The emergence of optimal coordination is robust to the population size and other game parameters. Our work therefore provides a natural solution to the Minority Game and sheds insights into the resource allocation problem in general. Besides, our work demonstrates the potential of the proposed reinforcement learning paradigm in deciphering many puzzles in the socio-economic context.
Abstract:Behavioral experiments on the trust game have shown that trust and trustworthiness are universal among human beings, contradicting the prediction by assuming \emph{Homo economicus} in orthodox Economics. This means some mechanism must be at work that favors their emergence. Most previous explanations however need to resort to some factors based upon imitative learning, a simple version of social learning. Here, we turn to the paradigm of reinforcement learning, where individuals update their strategies by evaluating the long-term return through accumulated experience. Specifically, we investigate the trust game with the Q-learning algorithm, where each participant is associated with two evolving Q-tables that guide one's decision making as trustor and trustee respectively. In the pairwise scenario, we reveal that high levels of trust and trustworthiness emerge when individuals appreciate both their historical experience and returns in the future. Mechanistically, the evolution of the Q-tables shows a crossover that resembles human's psychological changes. We also provide the phase diagram for the game parameters, where the boundary analysis is conducted. These findings are robust when the scenario is extended to a latticed population. Our results thus provide a natural explanation for the emergence of trust and trustworthiness without external factors involved. More importantly, the proposed paradigm shows the potential in deciphering many puzzles in human behaviors.