Abstract:Large language models (LLMs) have achieved remarkable progress in many natural language processing tasks. However, our experiment reveals that, in stance detection tasks, LLMs may generate biased stances due to spurious sentiment-stance correlation and preference towards certain individuals and topics, thus harming their performance. Therefore, in this paper, we propose to Mitigate Biases of LLMs in stance detection with Calibration (MB-Cal). In which, a novel gated calibration network is devised to mitigate the biases on the stance reasoning results from LLMs. Further, to make the calibration more accurate and generalizable, we construct counterfactual augmented data to rectify stance biases. Experimental results on in-target and zero-shot stance detection tasks show that the proposed MB-Cal can effectively mitigate biases of LLMs, achieving state-of-the-art results.
Abstract:Stance detection is a challenging task that aims to identify public opinion from social media platforms with respect to specific targets. Previous work on stance detection largely focused on pure texts. In this paper, we study multi-modal stance detection for tweets consisting of texts and images, which are prevalent in today's fast-growing social media platforms where people often post multi-modal messages. To this end, we create five new multi-modal stance detection datasets of different domains based on Twitter, in which each example consists of a text and an image. In addition, we propose a simple yet effective Targeted Multi-modal Prompt Tuning framework (TMPT), where target information is leveraged to learn multi-modal stance features from textual and visual modalities. Experimental results on our three benchmark datasets show that the proposed TMPT achieves state-of-the-art performance in multi-modal stance detection.