Abstract:Depth estimation is a cornerstone of 3D reconstruction and plays a vital role in minimally invasive endoscopic surgeries. However, most current depth estimation networks rely on traditional convolutional neural networks, which are limited in their ability to capture global information. Foundation models offer a promising avenue for enhancing depth estimation, but those currently available are primarily trained on natural images, leading to suboptimal performance when applied to endoscopic images. In this work, we introduce a novel fine-tuning strategy for the Depth Anything Model and integrate it with an intrinsic-based unsupervised monocular depth estimation framework. Our approach includes a low-rank adaptation technique based on random vectors, which improves the model's adaptability to different scales. Additionally, we propose a residual block built on depthwise separable convolution to compensate for the transformer's limited ability to capture high-frequency details, such as edges and textures. Our experimental results on the SCARED dataset show that our method achieves state-of-the-art performance while minimizing the number of trainable parameters. Applying this method in minimally invasive endoscopic surgery could significantly enhance both the precision and safety of these procedures.