Abstract:As with many other problems, real-world regression is plagued by the presence of noisy labels, an inevitable issue that demands our attention. Fortunately, much real-world data often exhibits an intrinsic property of continuously ordered correlations between labels and features, where data points with similar labels are also represented with closely related features. In response, we propose a novel approach named ConFrag, where we collectively model the regression data by transforming them into disjoint yet contrasting fragmentation pairs. This enables the training of more distinctive representations, enhancing the ability to select clean samples. Our ConFrag framework leverages a mixture of neighboring fragments to discern noisy labels through neighborhood agreement among expert feature extractors. We extensively perform experiments on six newly curated benchmark datasets of diverse domains, including age prediction, price prediction, and music production year estimation. We also introduce a metric called Error Residual Ratio (ERR) to better account for varying degrees of label noise. Our approach consistently outperforms fourteen state-of-the-art baselines, being robust against symmetric and random Gaussian label noise.
Abstract:In this work, we study codebook designs for full-dimension multiple-input multiple-output (FD-MIMO) systems with a multi-panel array (MPA). We propose novel codebooks which allow precise beam structures for MPA FD-MIMO systems by investigating the physical properties and alignments of the panels. We specifically exploit the characteristic that a group of antennas in a vertical direction exhibit more correlation than those in a horizontal direction. This enables an economical use of feedback bits while constructing finer beams compared to conventional codebooks. The codebook is further improved by dynamically allocating the feedback bits on multiple parts such as beam amplitude and co-phasing coefficients using reinforcement learning. The numerical results confirm the effectiveness of the proposed approach in terms of both performance and computational complexity.