Abstract:Infrared and visible (IR-VIS) image fusion has gained significant attention for its broad application value. However, existing methods often neglect the complementary role of infrared image in restoring visible image features under hazy conditions. To address this, we propose a joint learning framework that utilizes infrared image for the restoration and fusion of hazy IR-VIS images. To mitigate the adverse effects of feature diversity between IR-VIS images, we introduce a prompt generation mechanism that regulates modality-specific feature incompatibility. This creates a prompt selection matrix from non-shared image information, followed by prompt embeddings generated from a prompt pool. These embeddings help generate candidate features for dehazing. We further design an infrared-assisted feature restoration mechanism that selects candidate features based on haze density, enabling simultaneous restoration and fusion within a single-stage framework. To enhance fusion quality, we construct a multi-stage prompt embedding fusion module that leverages feature supplementation from the prompt generation module. Our method effectively fuses IR-VIS images while removing haze, yielding clear, haze-free fusion results. In contrast to two-stage methods that dehaze and then fuse, our approach enables collaborative training in a single-stage framework, making the model relatively lightweight and suitable for practical deployment. Experimental results validate its effectiveness and demonstrate advantages over existing methods.
Abstract:The unsourced random access (URA) has emerged as a viable scheme for supporting the massive machine-type communications (mMTC) in the sixth generation (6G) wireless networks. Notably, the tensor-based URA (TURA), with its inherent tensor structure, stands out by simultaneously enhancing performance and reducing computational complexity for the multi-user separation, especially in mMTC networks with a large numer of active devices. However, current TURA scheme lacks the soft decoder, thus precluding the incorporation of existing advanced coding techniques. In order to fully explore the potential of the TURA, this paper investigates the Polarcoded TURA (PTURA) scheme and develops the corresponding iterative Bayesian receiver with feedback (IBR-FB). Specifically, in the IBR-FB, we propose the Grassmannian modulation-aided Bayesian tensor decomposition (GM-BTD) algorithm under the variational Bayesian learning (VBL) framework, which leverages the property of the Grassmannian modulation to facilitate the convergence of the VBL process, and has the ability to generate the required soft information without the knowledge of the number of active devices. Furthermore, based on the soft information produced by the GM-BTD, we design the soft Grassmannian demodulator in the IBR-FB. Extensive simulation results demonstrate that the proposed PTURA in conjunction with the IBR-FB surpasses the existing state-of-the-art unsourced random access scheme in terms of accuracy and computational complexity.