Abstract:Driving scene understanding is to obtain comprehensive scene information through the sensor data and provide a basis for downstream tasks, which is indispensable for the safety of self-driving vehicles. Specific perception tasks, such as object detection and scene graph generation, are commonly used. However, the results of these tasks are only equivalent to the characterization of sampling from high-dimensional scene features, which are not sufficient to represent the scenario. In addition, the goal of perception tasks is inconsistent with human driving that just focuses on what may affect the ego-trajectory. Therefore, we propose an end-to-end Interpretable Implicit Driving Scene Understanding (II-DSU) model to extract implicit high-dimensional scene features as scene understanding results guided by a planning module and to validate the plausibility of scene understanding using auxiliary perception tasks for visualization. Experimental results on CARLA benchmarks show that our approach achieves the new state-of-the-art and is able to obtain scene features that embody richer scene information relevant to driving, enabling superior performance of the downstream planning.
Abstract:Vision-and-Language Navigation (VLN) is a realistic but challenging task that requires an agent to locate the target region using verbal and visual cues. While significant advancements have been achieved recently, there are still two broad limitations: (1) The explicit information mining for significant guiding semantics concealed in both vision and language is still under-explored; (2) The previously structured map method provides the average historical appearance of visited nodes, while it ignores distinctive contributions of various images and potent information retention in the reasoning process. This work proposes a dual semantic-aware recurrent global-adaptive network (DSRG) to address the above problems. First, DSRG proposes an instruction-guidance linguistic module (IGL) and an appearance-semantics visual module (ASV) for boosting vision and language semantic learning respectively. For the memory mechanism, a global adaptive aggregation module (GAA) is devised for explicit panoramic observation fusion, and a recurrent memory fusion module (RMF) is introduced to supply implicit temporal hidden states. Extensive experimental results on the R2R and REVERIE datasets demonstrate that our method achieves better performance than existing methods.