Abstract:Calibration-based methods have dominated RAW image denoising under extremely low-light environments. However, these methods suffer from several main deficiencies: 1) the calibration procedure is laborious and time-consuming, 2) denoisers for different cameras are difficult to transfer, and 3) the discrepancy between synthetic noise and real noise is enlarged by high digital gain. To overcome the above shortcomings, we propose a calibration-free pipeline for Lighting Every Drakness (LED), regardless of the digital gain or camera sensor. Instead of calibrating the noise parameters and training repeatedly, our method could adapt to a target camera only with few-shot paired data and fine-tuning. In addition, well-designed structural modification during both stages alleviates the domain gap between synthetic and real noise without any extra computational cost. With 2 pairs for each additional digital gain (in total 6 pairs) and 0.5% iterations, our method achieves superior performance over other calibration-based methods. Our code is available at https://github.com/Srameo/LED .
Abstract:In this work, we study the continual semantic segmentation problem, where the deep neural networks are required to incorporate new classes continually without catastrophic forgetting. We propose to use a structural re-parameterization mechanism, named representation compensation (RC) module, to decouple the representation learning of both old and new knowledge. The RC module consists of two dynamically evolved branches with one frozen and one trainable. Besides, we design a pooled cube knowledge distillation strategy on both spatial and channel dimensions to further enhance the plasticity and stability of the model. We conduct experiments on two challenging continual semantic segmentation scenarios, continual class segmentation and continual domain segmentation. Without any extra computational overhead and parameters during inference, our method outperforms state-of-the-art performance. The code is available at \url{https://github.com/zhangchbin/RCIL}.