Abstract:Deep learning techniques have shown promising results in the automatic classification of respiratory sounds. However, accurately distinguishing these sounds in real-world noisy conditions poses challenges for clinical deployment. Additionally, predicting signals with only background noise could undermine user trust in the system. In this study, we propose an audio enhancement (AE) pipeline as a pre-processing step before respiratory sound classification, aiming to improve performance in noisy environments. Multiple experiments were conducted using different audio enhancement model structures, demonstrating improved classification performance compared to the baseline method of noise injection data augmentation. Specifically, the integration of the AE pipeline resulted in a 2.59% increase in the ICBHI classification score on the ICBHI respiratory sound dataset and a 2.51% improvement on our recently collected Formosa Archive of Breath Sounds (FABS) in multi-class noisy scenarios. Furthermore, a physician validation study assessed the clinical utility of our system. Quantitative analysis revealed enhancements in efficiency, diagnostic confidence, and trust during model-assisted diagnosis with our system compared to raw noisy recordings. Workflows integrating enhanced audio led to an 11.61% increase in diagnostic sensitivity and facilitated high-confidence diagnoses. Our findings demonstrate that incorporating an audio enhancement algorithm significantly enhances robustness and clinical utility.
Abstract:Recent artificial intelligence (AI) technologies show remarkable evolution in various academic fields and industries. However, in the real world, dynamic data lead to principal challenges for deploying AI models. An unexpected data change brings about severe performance degradation in AI models. We identify two major related research fields, domain shift and concept drift according to the setting of the data change. Although these two popular research fields aim to solve distribution shift and non-stationary data stream problems, the underlying properties remain similar which also encourages similar technical approaches. In this review, we regroup domain shift and concept drift into a single research problem, namely the data change problem, with a systematic overview of state-of-the-art methods in the two research fields. We propose a three-phase problem categorization scheme to link the key ideas in the two technical fields. We thus provide a novel scope for researchers to explore contemporary technical strategies, learn industrial applications, and identify future directions for addressing data change challenges.
Abstract:Diabetic foot ulcers pose health risks, including higher morbidity, mortality, and amputation rates. Monitoring wound areas is crucial for proper care, but manual segmentation is subjective due to complex wound features and background variation. Expert annotations are costly and time-intensive, thus hampering large dataset creation. Existing segmentation models relying on extensive annotations are impractical in real-world scenarios with limited annotated data. In this paper, we propose a cross-domain augmentation method named TransMix that combines Augmented Global Pre-training AGP and Localized CutMix Fine-tuning LCF to enrich wound segmentation data for model learning. TransMix can effectively improve the foot ulcer segmentation model training by leveraging other dermatology datasets not on ulcer skins or wounds. AGP effectively increases the overall image variability, while LCF increases the diversity of wound regions. Experimental results show that TransMix increases the variability of wound regions and substantially improves the Dice score for models trained with only 40 annotated images under various proportions.