Abstract:Current research in breast cancer Magnetic Resonance Imaging (MRI), especially with Artificial Intelligence (AI), faces challenges due to the lack of expert segmentations. To address this, we introduce the MAMA-MIA dataset, comprising 1506 multi-center dynamic contrast-enhanced MRI cases with expert segmentations of primary tumors and non-mass enhancement areas. These cases were sourced from four publicly available collections in The Cancer Imaging Archive (TCIA). Initially, we trained a deep learning model to automatically segment the cases, generating preliminary segmentations that significantly reduced expert segmentation time. Sixteen experts, averaging 9 years of experience in breast cancer, then corrected these segmentations, resulting in the final expert segmentations. Additionally, two radiologists conducted a visual inspection of the automatic segmentations to support future quality control studies. Alongside the expert segmentations, we provide 49 harmonized demographic and clinical variables and the pretrained weights of the well-known nnUNet architecture trained using the DCE-MRI full-images and expert segmentations. This dataset aims to accelerate the development and benchmarking of deep learning models and foster innovation in breast cancer diagnostics and treatment planning.
Abstract:Computer-aided detection systems based on deep learning have shown good performance in breast cancer detection. However, high-density breasts show poorer detection performance since dense tissues can mask or even simulate masses. Therefore, the sensitivity of mammography for breast cancer detection can be reduced by more than 20% in dense breasts. Additionally, extremely dense cases reported an increased risk of cancer compared to low-density breasts. This study aims to improve the mass detection performance in high-density breasts using synthetic high-density full-field digital mammograms (FFDM) as data augmentation during breast mass detection model training. To this end, a total of five cycle-consistent GAN (CycleGAN) models using three FFDM datasets were trained for low-to-high-density image translation in high-resolution mammograms. The training images were split by breast density BI-RADS categories, being BI-RADS A almost entirely fatty and BI-RADS D extremely dense breasts. Our results showed that the proposed data augmentation technique improved the sensitivity and precision of mass detection in high-density breasts by 2% and 6% in two different test sets and was useful as a domain adaptation technique. In addition, the clinical realism of the synthetic images was evaluated in a reader study involving two expert radiologists and one surgical oncologist.
Abstract:Medical image synthesis has gained a great focus recently, especially after the introduction of Generative Adversarial Networks (GANs). GANs have been used widely to provide anatomically-plausible and diverse samples for augmentation and other applications, including segmentation and super resolution. In our previous work, Deep Convolutional GANs were used to generate synthetic mammogram lesions, masses mainly, that could enhance the classification performance in imbalanced datasets. In this new work, a deeper investigation was carried out to explore other aspects of the generated images evaluation, i.e., realism, feature space distribution, and observers studies. t-Stochastic Neighbor Embedding (t-SNE) was used to reduce the dimensionality of real and fake images to enable 2D visualisations. Additionally, two expert radiologists performed a realism-evaluation study. Visualisations showed that the generated images have a similar feature distribution of the real ones, avoiding outliers. Moreover, Receiver Operating Characteristic (ROC) curve showed that the radiologists could not, in many cases, distinguish between synthetic and real lesions, giving 48% and 61% accuracies in a balanced sample set.