Abstract:Generative models are used as an alternative data augmentation technique to alleviate the data scarcity problem faced in the medical imaging field. Diffusion models have gathered special attention due to their innovative generation approach, the high quality of the generated images and their relatively less complex training process compared with Generative Adversarial Networks. Still, the implementation of such models in the medical domain remains at early stages. In this work, we propose exploring the use of diffusion models for the generation of high quality full-field digital mammograms using state-of-the-art conditional diffusion pipelines. Additionally, we propose using stable diffusion models for the inpainting of synthetic lesions on healthy mammograms. We introduce MAM-E, a pipeline of generative models for high quality mammography synthesis controlled by a text prompt and capable of generating synthetic lesions on specific regions of the breast. Finally, we provide quantitative and qualitative assessment of the generated images and easy-to-use graphical user interfaces for mammography synthesis.
Abstract:Medical image synthesis has gained a great focus recently, especially after the introduction of Generative Adversarial Networks (GANs). GANs have been used widely to provide anatomically-plausible and diverse samples for augmentation and other applications, including segmentation and super resolution. In our previous work, Deep Convolutional GANs were used to generate synthetic mammogram lesions, masses mainly, that could enhance the classification performance in imbalanced datasets. In this new work, a deeper investigation was carried out to explore other aspects of the generated images evaluation, i.e., realism, feature space distribution, and observers studies. t-Stochastic Neighbor Embedding (t-SNE) was used to reduce the dimensionality of real and fake images to enable 2D visualisations. Additionally, two expert radiologists performed a realism-evaluation study. Visualisations showed that the generated images have a similar feature distribution of the real ones, avoiding outliers. Moreover, Receiver Operating Characteristic (ROC) curve showed that the radiologists could not, in many cases, distinguish between synthetic and real lesions, giving 48% and 61% accuracies in a balanced sample set.