Abstract:Introduction: This article introduces DisTrack, a methodology and a tool developed for tracking and analyzing misinformation within Online Social Networks (OSNs). DisTrack is designed to combat the spread of misinformation through a combination of Natural Language Processing (NLP) Social Network Analysis (SNA) and graph visualization. The primary goal is to detect misinformation, track its propagation, identify its sources, and assess the influence of various actors within the network. Methods: DisTrack's architecture incorporates a variety of methodologies including keyword search, semantic similarity assessments, and graph generation techniques. These methods collectively facilitate the monitoring of misinformation, the categorization of content based on alignment with known false claims, and the visualization of dissemination cascades through detailed graphs. The tool is tailored to capture and analyze the dynamic nature of misinformation spread in digital environments. Results: The effectiveness of DisTrack is demonstrated through three case studies focused on different themes: discredit/hate speech, anti-vaccine misinformation, and false narratives about the Russia-Ukraine conflict. These studies show DisTrack's capabilities in distinguishing posts that propagate falsehoods from those that counteract them, and tracing the evolution of misinformation from its inception. Conclusions: The research confirms that DisTrack is a valuable tool in the field of misinformation analysis. It effectively distinguishes between different types of misinformation and traces their development over time. By providing a comprehensive approach to understanding and combating misinformation in digital spaces, DisTrack proves to be an essential asset for researchers and practitioners working to mitigate the impact of false information in online social environments.
Abstract:Adversarial attacks represent a substantial challenge in Natural Language Processing (NLP). This study undertakes a systematic exploration of this challenge in two distinct phases: vulnerability evaluation and resilience enhancement of Transformer-based models under adversarial attacks. In the evaluation phase, we assess the susceptibility of three Transformer configurations, encoder-decoder, encoder-only, and decoder-only setups, to adversarial attacks of escalating complexity across datasets containing offensive language and misinformation. Encoder-only models manifest a 14% and 21% performance drop in offensive language detection and misinformation detection tasks, respectively. Decoder-only models register a 16% decrease in both tasks, while encoder-decoder models exhibit a maximum performance drop of 14% and 26% in the respective tasks. The resilience-enhancement phase employs adversarial training, integrating pre-camouflaged and dynamically altered data. This approach effectively reduces the performance drop in encoder-only models to an average of 5% in offensive language detection and 2% in misinformation detection tasks. Decoder-only models, occasionally exceeding original performance, limit the performance drop to 7% and 2% in the respective tasks. Although not surpassing the original performance, Encoder-decoder models can reduce the drop to an average of 6% and 2% respectively. Results suggest a trade-off between performance and robustness, with some models maintaining similar performance while gaining robustness. Our study and adversarial training techniques have been incorporated into an open-source tool for generating camouflaged datasets. However, methodology effectiveness depends on the specific camouflage technique and data encountered, emphasizing the need for continued exploration.
Abstract:Online Social Networks serve as fertile ground for harmful behavior, ranging from hate speech to the dissemination of disinformation. Malicious actors now have unprecedented freedom to misbehave, leading to severe societal unrest and dire consequences, as exemplified by events such as the Capitol assault during the US presidential election and the Antivaxx movement during the COVID-19 pandemic. Understanding online language has become more pressing than ever. While existing works predominantly focus on content analysis, we aim to shift the focus towards understanding harmful behaviors by relating content to their respective authors. Numerous novel approaches attempt to learn the stylistic features of authors in texts, but many of these approaches are constrained by small datasets or sub-optimal training losses. To overcome these limitations, we introduce the Style Transformer for Authorship Representations (STAR), trained on a large corpus derived from public sources of 4.5 x 10^6 authored texts involving 70k heterogeneous authors. Our model leverages Supervised Contrastive Loss to teach the model to minimize the distance between texts authored by the same individual. This author pretext pre-training task yields competitive performance at zero-shot with PAN challenges on attribution and clustering. Additionally, we attain promising results on PAN verification challenges using a single dense layer, with our model serving as an embedding encoder. Finally, we present results from our test partition on Reddit. Using a support base of 8 documents of 512 tokens, we can discern authors from sets of up to 1616 authors with at least 80\% accuracy. We share our pre-trained model at huggingface (https://huggingface.co/AIDA-UPM/star) and our code is available at (https://github.com/jahuerta92/star)
Abstract:Each year, wildfires destroy larger areas of Spain, threatening numerous ecosystems. Humans cause 90% of them (negligence or provoked) and the behaviour of individuals is unpredictable. However, atmospheric and environmental variables affect the spread of wildfires, and they can be analysed by using deep learning. In order to mitigate the damage of these events we proposed the novel Wildfire Assessment Model (WAM). Our aim is to anticipate the economic and ecological impact of a wildfire, assisting managers resource allocation and decision making for dangerous regions in Spain, Castilla y Le\'on and Andaluc\'ia. The WAM uses a residual-style convolutional network architecture to perform regression over atmospheric variables and the greenness index, computing necessary resources, the control and extinction time, and the expected burnt surface area. It is first pre-trained with self-supervision over 100,000 examples of unlabelled data with a masked patch prediction objective and fine-tuned using 311 samples of wildfires. The pretraining allows the model to understand situations, outclassing baselines with a 1,4%, 3,7% and 9% improvement estimating human, heavy and aerial resources; 21% and 10,2% in expected extinction and control time; and 18,8% in expected burnt area. Using the WAM we provide an example assessment map of Castilla y Le\'on, visualizing the expected resources over an entire region.
Abstract:Authors writing documents imprint identifying information within their texts: vocabulary, registry, punctuation, misspellings, or even emoji usage. Finding these details is very relevant to profile authors, relating back to their gender, occupation, age, and so on. But most importantly, repeating writing patterns can help attributing authorship to a text. Previous works use hand-crafted features or classification tasks to train their authorship models, leading to poor performance on out-of-domain authors. A better approach to this task is to learn stylometric representations, but this by itself is an open research challenge. In this paper, we propose PART: a contrastively trained model fit to learn \textbf{authorship embeddings} instead of semantics. By comparing pairs of documents written by the same author, we are able to determine the proprietary of a text by evaluating the cosine similarity of the evaluated documents, a zero-shot generalization to authorship identification. To this end, a pre-trained Transformer with an LSTM head is trained with the contrastive training method. We train our model on a diverse set of authors, from literature, anonymous blog posters and corporate emails; a heterogeneous set with distinct and identifiable writing styles. The model is evaluated on these datasets, achieving zero-shot 72.39\% and 86.73\% accuracy and top-5 accuracy respectively on the joint evaluation dataset when determining authorship from a set of 250 different authors. We qualitatively assess the representations with different data visualizations on the available datasets, profiling features such as book types, gender, age, or occupation of the author.
Abstract:Over the last few years, convolutional neural networks (CNNs) have dominated the field of computer vision thanks to their ability to extract features and their outstanding performance in classification problems, for example in the automatic analysis of X-rays. Unfortunately, these neural networks are considered black-box algorithms, i.e. it is impossible to understand how the algorithm has achieved the final result. To apply these algorithms in different fields and test how the methodology works, we need to use eXplainable AI techniques. Most of the work in the medical field focuses on binary or multiclass classification problems. However, in many real-life situations, such as chest X-rays, radiological signs of different diseases can appear at the same time. This gives rise to what is known as "multilabel classification problems". A disadvantage of these tasks is class imbalance, i.e. different labels do not have the same number of samples. The main contribution of this paper is a Deep Learning methodology for imbalanced, multilabel chest X-ray datasets. It establishes a baseline for the currently underutilised PadChest dataset and a new eXplainable AI technique based on heatmaps. This technique also includes probabilities and inter-model matching. The results of our system are promising, especially considering the number of labels used. Furthermore, the heatmaps match the expected areas, i.e. they mark the areas that an expert would use to make the decision.
Abstract:Both in scientific literature and in industry,, Semantic and context-aware Natural Language Processing-based solutions have been gaining importance in recent years. The possibilities and performance shown by these models when dealing with complex Language Understanding tasks is unquestionable, from conversational agents to the fight against disinformation in social networks. In addition, considerable attention is also being paid to developing multilingual models to tackle the language bottleneck. The growing need to provide more complex models implementing all these features has been accompanied by an increase in their size, without being conservative in the number of dimensions required. This paper aims to give a comprehensive account of the impact of a wide variety of dimensional reduction techniques on the performance of different state-of-the-art multilingual Siamese Transformers, including unsupervised dimensional reduction techniques such as linear and nonlinear feature extraction, feature selection, and manifold techniques. In order to evaluate the effects of these techniques, we considered the multilingual extended version of Semantic Textual Similarity Benchmark (mSTSb) and two different baseline approaches, one using the pre-trained version of several models and another using their fine-tuned STS version. The results evidence that it is possible to achieve an average reduction in the number of dimensions of $91.58\% \pm 2.59\%$ and $54.65\% \pm 32.20\%$, respectively. This work has also considered the consequences of dimensionality reduction for visualization purposes. The results of this study will significantly contribute to the understanding of how different tuning approaches affect performance on semantic-aware tasks and how dimensional reduction techniques deal with the high-dimensional embeddings computed for the STS task and their potential for highly demanding NLP tasks
Abstract:The appearance of complex attention-based language models such as BERT, Roberta or GPT-3 has allowed to address highly complex tasks in a plethora of scenarios. However, when applied to specific domains, these models encounter considerable difficulties. This is the case of Social Networks such as Twitter, an ever-changing stream of information written with informal and complex language, where each message requires careful evaluation to be understood even by humans given the important role that context plays. Addressing tasks in this domain through Natural Language Processing involves severe challenges. When powerful state-of-the-art multilingual language models are applied to this scenario, language specific nuances use to get lost in translation. To face these challenges we present \textbf{BERTuit}, the larger transformer proposed so far for Spanish language, pre-trained on a massive dataset of 230M Spanish tweets using RoBERTa optimization. Our motivation is to provide a powerful resource to better understand Spanish Twitter and to be used on applications focused on this social network, with special emphasis on solutions devoted to tackle the spreading of misinformation in this platform. BERTuit is evaluated on several tasks and compared against M-BERT, XLM-RoBERTa and XLM-T, very competitive multilingual transformers. The utility of our approach is shown with applications, in this case: a zero-shot methodology to visualize groups of hoaxes and profiling authors spreading disinformation. Misinformation spreads wildly on platforms such as Twitter in languages other than English, meaning performance of transformers may suffer when transferred outside English speaking communities.
Abstract:Our society produces and shares overwhelming amounts of information through the Online Social Networks (OSNs). Within this environment, misinformation and disinformation have proliferated, becoming a public safety concern on every country. Allowing the public and professionals to efficiently find reliable evidence about the factual veracity of a claim is crucial to mitigate this harmful spread. To this end, we propose FacTeR-Check, a multilingual architecture for semi-automated fact-checking that can be used for either the general public but also useful for fact-checking organisations. FacTeR-Check enables retrieving fact-checked information, unchecked claims verification and tracking dangerous information over social media. This architectures involves several modules developed to evaluate semantic similarity, to calculate natural language inference and to retrieve information from Online Social Networks. The union of all these modules builds a semi-automated fact-checking tool able of verifying new claims, to extract related evidence, and to track the evolution of a hoax on a OSN. While individual modules are validated on related benchmarks (mainly MSTS and SICK), the complete architecture is validated using a new dataset called NLI19-SP that is publicly released with COVID-19 related hoaxes and tweets from Spanish social media. Our results show state-of-the-art performance on the individual benchmarks, as well as producing useful analysis of the evolution over time of 61 different hoaxes.
Abstract:The ability of Transformers to perform with precision a variety of tasks such as question answering, Natural Language Inference (NLI) or summarising, have enable them to be ranked as one of the best paradigms to address this kind of tasks at present. NLI is one of the best scenarios to test these architectures, due to the knowledge required to understand complex sentences and established a relation between a hypothesis and a premise. Nevertheless, these models suffer from incapacity to generalise to other domains or difficulties to face multilingual scenarios. The leading pathway in the literature to address these issues involve designing and training extremely large architectures, which leads to unpredictable behaviours and to establish barriers which impede broad access and fine tuning. In this paper, we propose a new architecture, siamese multilingual transformer (SML), to efficiently align multilingual embeddings for Natural Language Inference. SML leverages siamese pre-trained multi-lingual transformers with frozen weights where the two input sentences attend each other to later be combined through a matrix alignment method. The experimental results carried out in this paper evidence that SML allows to reduce drastically the number of trainable parameters while still achieving state-of-the-art performance.