Abstract:While deep learning models have seen widespread success in controlled environments, there are still barriers to their adoption in open-world settings. One critical task for safe deployment is the detection of anomalous or out-of-distribution samples that may require human intervention. In this work, we present a novel loss function and recipe for training networks with improved density-based out-of-distribution sensitivity. We demonstrate the effectiveness of our method on CIFAR-10, notably reducing the false-positive rate of the relative Mahalanobis distance method on far-OOD tasks by over 50%.
Abstract:As machine learning (ML) classifiers increasingly oversee the automated monitoring of network traffic, studying their resilience against adversarial attacks becomes critical. This paper focuses on poisoning attacks, specifically backdoor attacks, against network traffic flow classifiers. We investigate the challenging scenario of clean-label poisoning where the adversary's capabilities are constrained to tampering only with the training data - without the ability to arbitrarily modify the training labels or any other component of the training process. We describe a trigger crafting strategy that leverages model interpretability techniques to generate trigger patterns that are effective even at very low poisoning rates. Finally, we design novel strategies to generate stealthy triggers, including an approach based on generative Bayesian network models, with the goal of minimizing the conspicuousness of the trigger, and thus making detection of an ongoing poisoning campaign more challenging. Our findings provide significant insights into the feasibility of poisoning attacks on network traffic classifiers used in multiple scenarios, including detecting malicious communication and application classification.
Abstract:Responsible Artificial Intelligence (AI) - the practice of developing, evaluating, and maintaining accurate AI systems that also exhibit essential properties such as robustness and explainability - represents a multifaceted challenge that often stretches standard machine learning tooling, frameworks, and testing methods beyond their limits. In this paper, we present two new software libraries - hydra-zen and the rAI-toolbox - that address critical needs for responsible AI engineering. hydra-zen dramatically simplifies the process of making complex AI applications configurable, and their behaviors reproducible. The rAI-toolbox is designed to enable methods for evaluating and enhancing the robustness of AI-models in a way that is scalable and that composes naturally with other popular ML frameworks. We describe the design principles and methodologies that make these tools effective, including the use of property-based testing to bolster the reliability of the tools themselves. Finally, we demonstrate the composability and flexibility of the tools by showing how various use cases from adversarial robustness and explainable AI can be concisely implemented with familiar APIs.