Abstract:Unsupervised learning has become an essential building block of AI systems. The representations it produces, e.g. in foundation models, are critical to a wide variety of downstream applications. It is therefore important to carefully examine unsupervised models to ensure not only that they produce accurate predictions, but also that these predictions are not "right for the wrong reasons", the so-called Clever Hans (CH) effect. Using specially developed Explainable AI techniques, we show for the first time that CH effects are widespread in unsupervised learning. Our empirical findings are enriched by theoretical insights, which interestingly point to inductive biases in the unsupervised learning machine as a primary source of CH effects. Overall, our work sheds light on unexplored risks associated with practical applications of unsupervised learning and suggests ways to make unsupervised learning more robust.
Abstract:The 'Clever Hans' effect occurs when the learned model produces correct predictions based on the 'wrong' features. This effect which undermines the generalization capability of an ML model and goes undetected by standard validation techniques has been frequently observed for supervised learning where the training algorithm leverages spurious correlations in the data. The question whether Clever Hans also occurs in unsupervised learning, and in which form, has received so far almost no attention. Therefore, this paper will contribute an explainable AI (XAI) procedure that can highlight the relevant features used by popular anomaly detection models of different type. Our analysis reveals that the Clever Hans effect is widespread in anomaly detection and occurs in many (unexpected) forms. Interestingly, the observed Clever Hans effects are in this case not so much due to the data, but due to the anomaly detection models themselves whose structure makes them unable to detect the truly relevant features, even though vast amounts of data points are available. Overall, our work contributes a warning against an unrestrained use of existing anomaly detection models in practical applications, but it also points at a possible way out of the Clever Hans dilemma, specifically, by allowing multiple anomaly models to mutually cancel their individual structural weaknesses to jointly produce a better and more trustworthy anomaly detector.
Abstract:A wealth of algorithms have been developed to extract natural cluster structure in data. Identifying this structure is desirable but not always sufficient: We may also want to understand why the data points have been assigned to a given cluster. Clustering algorithms do not offer a systematic answer to this simple question. Hence we propose a new framework that can, for the first time, explain cluster assignments in terms of input features in a comprehensive manner. It is based on the novel theoretical insight that clustering models can be rewritten as neural networks, or 'neuralized'. Predictions of the obtained networks can then be quickly and accurately attributed to the input features. Several showcases demonstrate the ability of our method to assess the quality of learned clusters and to extract novel insights from the analyzed data and representations.
Abstract:Detecting and explaining anomalies is a challenging effort. This holds especially true when data exhibits strong dependencies and single measurements need to be assessed and analyzed in their respective context. In this work, we consider scenarios where measurements are non-i.i.d, i.e. where samples are dependent on corresponding discrete latent variables which are connected through some given dependency structure, the contextual information. Our contribution is twofold: (i) Building atop of support vector data description (SVDD), we derive a method able to cope with latent-class dependency structure that can still be optimized efficiently. We further show that our approach neatly generalizes vanilla SVDD as well as k-means and conditional random fields (CRF) and provide a corresponding probabilistic interpretation. (ii) In unsupervised scenarios where it is not possible to quantify the accuracy of an anomaly detector, having an human-interpretable solution is the key to success. Based on deep Taylor decomposition and a reformulation of our trained anomaly detector as a neural network, we are able to backpropagate predictions to pixel-domain and thus identify features and regions of high relevance. We demonstrate the usefulness of our novel approach on toy data with known spatio-temporal structure and successfully validate on synthetic as well as real world off-shore data from the oil industry.
Abstract:A common machine learning task is to discriminate between normal and anomalous data points. In practice, it is not always sufficient to reach high accuracy at this task, one also would like to understand why a given data point has been predicted in a certain way. We present a new principled approach for one-class SVMs that decomposes outlier predictions in terms of input variables. The method first recomposes the one-class model as a neural network with distance functions and min-pooling, and then performs a deep Taylor decomposition (DTD) of the model output. The proposed One-Class DTD is applicable to a number of common distance-based SVM kernels and is able to reliably explain a wide set of data anomalies. Furthermore, it outperforms baselines such as sensitivity analysis, nearest neighbor, or simple edge detection.