The University of Tokyo
Abstract:In this study, we provide constructive proof that Transformers can recognize and generate hierarchical language efficiently with respect to model size, even without the need for a specific positional encoding. Specifically, we show that causal masking and a starting token enable Transformers to compute positional information and depth within hierarchical structures. We demonstrate that Transformers without positional encoding can generate hierarchical languages. Furthermore, we suggest that explicit positional encoding might have a detrimental effect on generalization with respect to sequence length.
Abstract:Looped Transformers offer advantages in parameter efficiency and Turing completeness. However, their expressive power for function approximation and approximation rate remains underexplored. In this paper, we establish approximation rates of Looped Transformers by defining the concept of the modulus of continuity for sequence-to-sequence functions. This reveals a limitation specific to the looped architecture. That is, the analysis prompts us to incorporate scaling parameters for each loop, conditioned on timestep encoding. Experimental results demonstrate that increasing the number of loops enhances performance, with further gains achieved through the timestep encoding architecture.
Abstract:Modern over-parameterized neural networks can be trained to fit the training data perfectly while still maintaining a high generalization performance. This "benign overfitting" phenomenon has been studied in a surge of recent theoretical work; however, most of these studies have been limited to linear models or two-layer neural networks. In this work, we analyze benign overfitting in the token selection mechanism of the attention architecture, which characterizes the success of transformer models. We first show the existence of a benign overfitting solution and explain its mechanism in the attention architecture. Next, we discuss whether the model converges to such a solution, raising the difficulties specific to the attention architecture. We then present benign overfitting cases and not-benign overfitting cases by conditioning different scenarios based on the behavior of attention probabilities during training. To the best of our knowledge, this is the first study to characterize benign overfitting for the attention mechanism.
Abstract:Recent research in the field of machine learning has increasingly focused on the memorization capacity of Transformers, but how efficient they are is not yet well understood. We demonstrate that Transformers can memorize labels with $\tilde{O}(\sqrt{N})$ parameters in a next-token prediction setting for $N$ input sequences of length $n$, which is proved to be optimal up to logarithmic factors. This indicates that Transformers can efficiently perform memorization with little influence from the input length $n$ owing to the benefit of parameter sharing. We also analyze the memorization capacity in the sequence-to-sequence setting, and find that $\tilde{O}(\sqrt{nN})$ parameters are not only sufficient, but also necessary at least for Transformers with hardmax. These results suggest that while self-attention mechanisms can efficiently identify input sequences, the feed-forward network becomes a bottleneck when associating a label to each token.
Abstract:Real-world data distributions are often highly skewed. This has spurred a growing body of research on long-tailed recognition to address this imbalance in training classification models. Among the methods studied, multiplicative logit adjustment (MLA) stands out as a simple and effective method. However, it lacks theoretical guarantees, which raises concerns about the optimality of its adjustment method. We provide a theoretical justification for the effectiveness of MLA with the following two-step theory. First, we develop a theory that adjusts optimal decision boundaries by estimating feature spread on the basis of neural collapse. Then, we demonstrate that MLA approximates this optimal method. Additionally, through experiments on long-tailed datasets, we illustrate the practical usefulness of MLA under more realistic conditions. We also offer experimental insights to guide the tuning of MLA's hyperparameters.
Abstract:Sum-product networks (SPNs) are probabilistic models characterized by exact and fast evaluation of fundamental probabilistic operations. Its superior computational tractability has led to applications in many fields, such as machine learning with time constraints or accuracy requirements and real-time systems. The structural constraints of SPNs supporting fast inference, however, lead to increased learning-time complexity and can be an obstacle to building highly expressive SPNs. This study aimed to develop a Bayesian learning approach that can be efficiently implemented on large-scale SPNs. We derived a new full conditional probability of Gibbs sampling by marginalizing multiple random variables to expeditiously obtain the posterior distribution. The complexity analysis revealed that our sampling algorithm works efficiently even for the largest possible SPN. Furthermore, we proposed a hyperparameter tuning method that balances the diversity of the prior distribution and optimization efficiency in large-scale SPNs. Our method has improved learning-time complexity and demonstrated computational speed tens to more than one hundred times faster and superior predictive performance in numerical experiments on more than 20 datasets.
Abstract:The two-stage fine-tuning (FT) method, linear probing then fine-tuning (LP-FT), consistently outperforms linear probing (LP) and FT alone in terms of accuracy for both in-distribution (ID) and out-of-distribution (OOD) data. This success is largely attributed to the preservation of pre-trained features, achieved through a near-optimal linear head obtained during LP. However, despite the widespread use of large language models, the exploration of complex architectures such as Transformers remains limited. In this paper, we analyze the training dynamics of LP-FT for classification models on the basis of the neural tangent kernel (NTK) theory. Our analysis decomposes the NTK matrix into two components, highlighting the importance of the linear head norm alongside the prediction accuracy at the start of the FT stage. We also observe a significant increase in the linear head norm during LP, stemming from training with the cross-entropy (CE) loss, which effectively minimizes feature changes. Furthermore, we find that this increased norm can adversely affect model calibration, a challenge that can be addressed by temperature scaling. Additionally, we extend our analysis with the NTK to the low-rank adaptation (LoRA) method and validate its effectiveness. Our experiments with a Transformer-based model on natural language processing tasks across multiple benchmarks confirm our theoretical analysis and demonstrate the effectiveness of LP-FT in fine-tuning language models. Code is available at https://github.com/tom4649/lp-ft_ntk.
Abstract:End-to-end (E2E) training, optimizing the entire model through error backpropagation, fundamentally supports the advancements of deep learning. Despite its high performance, E2E training faces the problems of memory consumption, parallel computing, and discrepancy with the functionalities of the actual brain. Various alternative methods have been proposed to overcome these difficulties; however, no one can yet match the performance of E2E training, thereby falling short in practicality. Furthermore, there is no deep understanding regarding differences in the trained model properties beyond the performance gap. In this paper, we reconsider why E2E training demonstrates a superior performance through a comparison with layer-wise training, a non-E2E method that locally sets errors. On the basis of the observation that E2E training has an advantage in propagating input information, we analyze the information plane dynamics of intermediate representations based on the Hilbert-Schmidt independence criterion (HSIC). The results of our normalized HSIC value analysis reveal the E2E training ability to exhibit different information dynamics across layers, in addition to efficient information propagation. Furthermore, we show that this layer-role differentiation leads to the final representation following the information bottleneck principle. It suggests the need to consider the cooperative interactions between layers, not just the final layer when analyzing the information bottleneck of deep learning.
Abstract:Deep neural networks are being increasingly implemented throughout society in recent years. It is useful to identify which parameters trigger misclassification in diagnosing undesirable model behaviors. The concept of parameter saliency is proposed and used to diagnose convolutional neural networks (CNNs) by ranking convolution filters that may have caused misclassification on the basis of parameter saliency. It is also shown that fine-tuning the top ranking salient filters has efficiently corrected misidentification on ImageNet. However, there is still a knowledge gap in terms of understanding why parameter saliency ranking can find the filters inducing misidentification. In this work, we attempt to bridge the gap by analyzing parameter saliency ranking from a statistical viewpoint, namely, extreme value theory. We first show that the existing work implicitly assumes that the gradient norm computed for each filter follows a normal distribution. Then, we clarify the relationship between parameter saliency and the score based on the peaks-over-threshold (POT) method, which is often used to model extreme values. Finally, we reformulate parameter saliency in terms of the POT method, where this reformulation is regarded as statistical anomaly detection and does not require the implicit assumptions of the existing parameter-saliency formulation. Our experimental results demonstrate that our reformulation can detect malicious filters as well. Furthermore, we show that the existing parameter saliency method exhibits a bias against the depth of layers in deep neural networks. In particular, this bias has the potential to inhibit the discovery of filters that cause misidentification in situations where domain shift occurs. In contrast, parameter saliency based on POT shows less of this bias.
Abstract:This paper investigates the initialization bias of the Fourier neural operator (FNO). A mean-field theory for FNO is established, analyzing the behavior of the random FNO from an ``edge of chaos'' perspective. We uncover that the forward and backward propagation behaviors exhibit characteristics unique to FNO, induced by mode truncation, while also showcasing similarities to those of densely connected networks. Building upon this observation, we also propose a FNO version of the He initialization scheme to mitigate the negative initialization bias leading to training instability. Experimental results demonstrate the effectiveness of our initialization scheme, enabling stable training of a 32-layer FNO without the need for additional techniques or significant performance degradation.