In-context learning (ICL) enables large language models (LLMs) to adapt to new tasks without fine-tuning by leveraging contextual information provided within a prompt. However, ICL relies not only on contextual clues but also on the global knowledge acquired during pretraining for the next token prediction. Analyzing this process has been challenging due to the complex computational circuitry of LLMs. This paper investigates the balance between in-context information and pretrained bigram knowledge in token prediction, focusing on the induction head mechanism, a key component in ICL. Leveraging the fact that a two-layer transformer can implement the induction head mechanism with associative memories, we theoretically analyze the logits when a two-layer transformer is given prompts generated by a bigram model. In the experiments, we design specific prompts to evaluate whether the outputs of a two-layer transformer align with the theoretical results.