Modern over-parameterized neural networks can be trained to fit the training data perfectly while still maintaining a high generalization performance. This "benign overfitting" phenomenon has been studied in a surge of recent theoretical work; however, most of these studies have been limited to linear models or two-layer neural networks. In this work, we analyze benign overfitting in the token selection mechanism of the attention architecture, which characterizes the success of transformer models. We first show the existence of a benign overfitting solution and explain its mechanism in the attention architecture. Next, we discuss whether the model converges to such a solution, raising the difficulties specific to the attention architecture. We then present benign overfitting cases and not-benign overfitting cases by conditioning different scenarios based on the behavior of attention probabilities during training. To the best of our knowledge, this is the first study to characterize benign overfitting for the attention mechanism.