Abstract:Universal Domain Adaptation (UniDA) aims to transfer knowledge from a labeled source domain to an unlabeled target domain without assuming how much the label-sets of the two domains intersect. The goal of UniDA is to achieve robust performance on the target domain across different intersection levels. However, existing literature has not sufficiently explored performance under extreme intersection levels. Our experiments reveal that state-of-the-art methods struggle when the source domain has significantly more non-overlapping classes than overlapping ones, a setting we refer to as Extreme UniDA. In this paper, we demonstrate that classical partial domain alignment, which focuses on aligning only overlapping-class data between domains, is limited in mitigating the bias of feature extractors toward source-private classes in extreme UniDA scenarios. We argue that feature extractors trained with source supervised loss distort the intrinsic structure of the target data due to the inherent differences between source-private classes and the target data. To mitigate this bias, we propose using self-supervised learning to preserve the structure of the target data. Our approach can be easily integrated into existing frameworks. We apply the proposed approach to two distinct training paradigms-adversarial-based and optimal-transport-based-and show consistent improvements across various intersection levels, with significant gains in extreme UniDA settings.
Abstract:Knowledge editing is a rising technique for efficiently updating factual knowledge in Large Language Models (LLMs) with minimal alteration of parameters. However, recent studies have identified concerning side effects, such as knowledge distortion and the deterioration of general abilities, that have emerged after editing. This survey presents a comprehensive study of these side effects, providing a unified view of the challenges associated with knowledge editing in LLMs. We discuss related works and summarize potential research directions to overcome these limitations. Our work highlights the limitations of current knowledge editing methods, emphasizing the need for deeper understanding of inner knowledge structures of LLMs and improved knowledge editing methods. To foster future research, we have released the complementary materials such as paper collection publicly at https://github.com/MiuLab/EditLLM-Survey
Abstract:Recent advances in self-supervised speech models have shown significant improvement in many downstream tasks. However, these models predominantly centered on frame-level training objectives, which can fall short in spoken language understanding tasks that require semantic comprehension. Existing works often rely on additional speech-text data as intermediate targets, which is costly in the real-world setting. To address this challenge, we propose Pseudo-Word HuBERT (PW-HuBERT), a framework that integrates pseudo word-level targets into the training process, where the targets are derived from a visually-ground speech model, notably eliminating the need for speech-text paired data. Our experimental results on four spoken language understanding (SLU) benchmarks suggest the superiority of our model in capturing semantic information.
Abstract:Open-domain conversational question answering can be viewed as two tasks: passage retrieval and conversational question answering, where the former relies on selecting candidate passages from a large corpus and the latter requires better understanding of a question with contexts to predict the answers. This paper proposes ConvADR-QA that leverages historical answers to boost retrieval performance and further achieves better answering performance. In our proposed framework, the retrievers use a teacher-student framework to reduce noises from previous turns. Our experiments on the benchmark dataset, OR-QuAC, demonstrate that our model outperforms existing baselines in both extractive and generative reader settings, well justifying the effectiveness of historical answers for open-domain conversational question answering.