Abstract:Text-driven motion generation has achieved substantial progress with the emergence of diffusion models. However, existing methods still struggle to generate complex motion sequences that correspond to fine-grained descriptions, depicting detailed and accurate spatio-temporal actions. This lack of fine controllability limits the usage of motion generation to a larger audience. To tackle these challenges, we present FineMoGen, a diffusion-based motion generation and editing framework that can synthesize fine-grained motions, with spatial-temporal composition to the user instructions. Specifically, FineMoGen builds upon diffusion model with a novel transformer architecture dubbed Spatio-Temporal Mixture Attention (SAMI). SAMI optimizes the generation of the global attention template from two perspectives: 1) explicitly modeling the constraints of spatio-temporal composition; and 2) utilizing sparsely-activated mixture-of-experts to adaptively extract fine-grained features. To facilitate a large-scale study on this new fine-grained motion generation task, we contribute the HuMMan-MoGen dataset, which consists of 2,968 videos and 102,336 fine-grained spatio-temporal descriptions. Extensive experiments validate that FineMoGen exhibits superior motion generation quality over state-of-the-art methods. Notably, FineMoGen further enables zero-shot motion editing capabilities with the aid of modern large language models (LLM), which faithfully manipulates motion sequences with fine-grained instructions. Project Page: https://mingyuan-zhang.github.io/projects/FineMoGen.html
Abstract:3D human motion generation is crucial for creative industry. Recent advances rely on generative models with domain knowledge for text-driven motion generation, leading to substantial progress in capturing common motions. However, the performance on more diverse motions remains unsatisfactory. In this work, we propose ReMoDiffuse, a diffusion-model-based motion generation framework that integrates a retrieval mechanism to refine the denoising process. ReMoDiffuse enhances the generalizability and diversity of text-driven motion generation with three key designs: 1) Hybrid Retrieval finds appropriate references from the database in terms of both semantic and kinematic similarities. 2) Semantic-Modulated Transformer selectively absorbs retrieval knowledge, adapting to the difference between retrieved samples and the target motion sequence. 3) Condition Mixture better utilizes the retrieval database during inference, overcoming the scale sensitivity in classifier-free guidance. Extensive experiments demonstrate that ReMoDiffuse outperforms state-of-the-art methods by balancing both text-motion consistency and motion quality, especially for more diverse motion generation.