Abstract:We introduce spatiotemporal-graph models that concurrently process data from the twin advanced LIGO detectors and the advanced Virgo detector. We trained these AI classifiers with 2.4 million \texttt{IMRPhenomXPHM} waveforms that describe quasi-circular, spinning, non-precessing binary black hole mergers with component masses $m_{\{1,2\}}\in[3M_\odot, 50 M_\odot]$, and individual spins $s^z_{\{1,2\}}\in[-0.9, 0.9]$; and which include the $(\ell, |m|) = \{(2, 2), (2, 1), (3, 3), (3, 2), (4, 4)\}$ modes, and mode mixing effects in the $\ell = 3, |m| = 2$ harmonics. We trained these AI classifiers within 22 hours using distributed training over 96 NVIDIA V100 GPUs in the Summit supercomputer. We then used transfer learning to create AI predictors that estimate the total mass of potential binary black holes identified by all AI classifiers in the ensemble. We used this ensemble, 3 AI classifiers and 2 predictors, to process a year-long test set in which we injected 300,000 signals. This year-long test set was processed within 5.19 minutes using 1024 NVIDIA A100 GPUs in the Polaris supercomputer (for AI inference) and 128 CPU nodes in the ThetaKNL supercomputer (for post-processing of noise triggers), housed at the Argonne Leadership Supercomputing Facility. These studies indicate that our AI ensemble provides state-of-the-art signal detection accuracy, and reports 2 misclassifications for every year of searched data. This is the first AI ensemble designed to search for and find higher order gravitational wave mode signals.
Abstract:We introduce a novel method for gravitational wave detection that combines: 1) hybrid dilated convolution neural networks to accurately model both short- and long-range temporal sequential information of gravitational wave signals; and 2) graph neural networks to capture spatial correlations among gravitational wave observatories to consistently describe and identify the presence of a signal in a detector network. These spatiotemporal-graph AI models are tested for signal detection of gravitational waves emitted by quasi-circular, non-spinning and quasi-circular, spinning, non-precessing binary black hole mergers. For the latter case, we needed a dataset of 1.2 million modeled waveforms to densely sample this signal manifold. Thus, we reduced time-to-solution by training several AI models in the Polaris supercomputer at the Argonne Leadership Supercomputing Facility within 1.7 hours by distributing the training over 256 NVIDIA A100 GPUs, achieving optimal classification performance. This approach also exhibits strong scaling up to 512 NVIDIA A100 GPUs. We then created ensembles of AI models to process data from a three detector network, namely, the advanced LIGO Hanford and Livingston detectors, and the advanced Virgo detector. An ensemble of 2 AI models achieves state-of-the-art performance for signal detection, and reports seven misclassifications per decade of searched data, whereas an ensemble of 4 AI models achieves optimal performance for signal detection with two misclassifications for every decade of searched data. Finally, when we distributed AI inference over 128 GPUs in the Polaris supercomputer and 128 nodes in the Theta supercomputer, our AI ensemble is capable of processing a decade of gravitational wave data from a three detector network within 3.5 hours.
Abstract:We introduce an ensemble of artificial intelligence models for gravitational wave detection that we trained in the Summit supercomputer using 32 nodes, equivalent to 192 NVIDIA V100 GPUs, within 2 hours. Once fully trained, we optimized these models for accelerated inference using NVIDIA TensorRT. We deployed our inference-optimized AI ensemble in the ThetaGPU supercomputer at Argonne Leadership Computer Facility to conduct distributed inference. Using the entire ThetaGPU supercomputer, consisting of 20 nodes each of which has 8 NVIDIA A100 Tensor Core GPUs and 2 AMD Rome CPUs, our NVIDIA TensorRT-optimized AI ensemble porcessed an entire month of advanced LIGO data (including Hanford and Livingston data streams) within 50 seconds. Our inference-optimized AI ensemble retains the same sensitivity of traditional AI models, namely, it identifies all known binary black hole mergers previously identified in this advanced LIGO dataset and reports no misclassifications, while also providing a 3X inference speedup compared to traditional artificial intelligence models. We used time slides to quantify the performance of our AI ensemble to process up to 5 years worth of advanced LIGO data. In this synthetically enhanced dataset, our AI ensemble reports an average of one misclassification for every month of searched advanced LIGO data. We also present the receiver operating characteristic curve of our AI ensemble using this 5 year long advanced LIGO dataset. This approach provides the required tools to conduct accelerated, AI-driven gravitational wave detection at scale.
Abstract:We present a deep-learning artificial intelligence model that is capable of learning and forecasting the late-inspiral, merger and ringdown of numerical relativity waveforms that describe quasi-circular, spinning, non-precessing binary black hole mergers. We used the NRHybSur3dq8 surrogate model to produce train, validation and test sets of $\ell=|m|=2$ waveforms that cover the parameter space of binary black hole mergers with mass-ratios $q\leq8$ and individual spins $|s^z_{\{1,2\}}| \leq 0.8$. These waveforms cover the time range $t\in[-5000\textrm{M}, 130\textrm{M}]$, where $t=0M$ marks the merger event, defined as the maximum value of the waveform amplitude. We harnessed the ThetaGPU supercomputer at the Argonne Leadership Computing Facility to train our AI model using a training set of 1.5 million waveforms. We used 16 NVIDIA DGX A100 nodes, each consisting of 8 NVIDIA A100 Tensor Core GPUs and 2 AMD Rome CPUs, to fully train our model within 3.5 hours. Our findings show that artificial intelligence can accurately forecast the dynamical evolution of numerical relativity waveforms in the time range $t\in[-100\textrm{M}, 130\textrm{M}]$. Sampling a test set of 190,000 waveforms, we find that the average overlap between target and predicted waveforms is $\gtrsim99\%$ over the entire parameter space under consideration. We also combined scientific visualization and accelerated computing to identify what components of our model take in knowledge from the early and late-time waveform evolution to accurately forecast the latter part of numerical relativity waveforms. This work aims to accelerate the creation of scalable, computationally efficient and interpretable artificial intelligence models for gravitational wave astrophysics.