Abstract:Low-rank adaptation (LoRA) and its mixture-of-experts (MOE) variants are highly effective parameter-efficient fine-tuning (PEFT) methods. However, they introduce significant latency in multi-tenant settings due to the LoRA modules and MOE routers added to multiple linear modules in the Transformer layer. To address this issue, we propose Mixture of Low-Rank Adaptation (MiLoRA), a novel and efficient LoRA variant. MiLoRA differs from previous MOE-style LoRA methods by considering each LoRA module as an expert and employing a prompt-aware routing mechanism. This mechanism calculates expert routing results once before generating the first new token and reuses these results for subsequent tokens, reducing latency. Extensive experiments and analysis on commonsense reasoning tasks, math reasoning tasks, and widely used LLM evaluation benchmarks demonstrate that MiLoRA consistently outperforms strong PEFT baselines with comparable tunable parameter budgets. Additionally, MiLoRA significantly reduces latency in multi-tenant settings compared to previous LoRA-based methods.
Abstract:Large language models (LLMs) have performed remarkably well in various natural language processing tasks by benchmarking, including in the Western medical domain. However, the professional evaluation benchmarks for LLMs have yet to be covered in the traditional Chinese medicine(TCM) domain, which has a profound history and vast influence. To address this research gap, we introduce TCM-Bench, an comprehensive benchmark for evaluating LLM performance in TCM. It comprises the TCM-ED dataset, consisting of 5,473 questions sourced from the TCM Licensing Exam (TCMLE), including 1,300 questions with authoritative analysis. It covers the core components of TCMLE, including TCM basis and clinical practice. To evaluate LLMs beyond accuracy of question answering, we propose TCMScore, a metric tailored for evaluating the quality of answers generated by LLMs for TCM related questions. It comprehensively considers the consistency of TCM semantics and knowledge. After conducting comprehensive experimental analyses from diverse perspectives, we can obtain the following findings: (1) The unsatisfactory performance of LLMs on this benchmark underscores their significant room for improvement in TCM. (2) Introducing domain knowledge can enhance LLMs' performance. However, for in-domain models like ZhongJing-TCM, the quality of generated analysis text has decreased, and we hypothesize that their fine-tuning process affects the basic LLM capabilities. (3) Traditional metrics for text generation quality like Rouge and BertScore are susceptible to text length and surface semantic ambiguity, while domain-specific metrics such as TCMScore can further supplement and explain their evaluation results. These findings highlight the capabilities and limitations of LLMs in the TCM and aim to provide a more profound assistance to medical research.
Abstract:Biomedical language understanding benchmarks are the driving forces for artificial intelligence applications with large language model (LLM) back-ends. However, most current benchmarks: (a) are limited to English which makes it challenging to replicate many of the successes in English for other languages, or (b) focus on knowledge probing of LLMs and neglect to evaluate how LLMs apply these knowledge to perform on a wide range of bio-medical tasks, or (c) have become a publicly available corpus and are leaked to LLMs during pre-training. To facilitate the research in medical LLMs, we re-build the Chinese Biomedical Language Understanding Evaluation (CBLUE) benchmark into a large scale prompt-tuning benchmark, PromptCBLUE. Our benchmark is a suitable test-bed and an online platform for evaluating Chinese LLMs' multi-task capabilities on a wide range bio-medical tasks including medical entity recognition, medical text classification, medical natural language inference, medical dialogue understanding and medical content/dialogue generation. To establish evaluation on these tasks, we have experimented and report the results with the current 9 Chinese LLMs fine-tuned with differtent fine-tuning techniques.
Abstract:Non-autoregressive translation (NAT) model achieves a much faster inference speed than the autoregressive translation (AT) model because it can simultaneously predict all tokens during inference. However, its translation quality suffers from degradation compared to AT. And existing NAT methods only focus on improving the NAT model's performance but do not fully utilize it. In this paper, we propose a simple but effective method called "Candidate Soups," which can obtain high-quality translations while maintaining the inference speed of NAT models. Unlike previous approaches that pick the individual result and discard the remainders, Candidate Soups (CDS) can fully use the valuable information in the different candidate translations through model uncertainty. Extensive experiments on two benchmarks (WMT'14 EN-DE and WMT'16 EN-RO) demonstrate the effectiveness and generality of our proposed method, which can significantly improve the translation quality of various base models. More notably, our best variant outperforms the AT model on three translation tasks with 7.6 times speedup.