Abstract:Unmanned Aerial vehicles (UAVs) are widely used as network processors in mobile networks, but more recently, UAVs have been used in Mobile Edge Computing as mobile servers. However, there are significant challenges to use UAVs in complex environments with obstacles and cooperation between UAVs. We introduce a new multi-UAV Mobile Edge Computing platform, which aims to provide better Quality-of-Service and path planning based on reinforcement learning to address these issues. The contributions of our work include: 1) optimizing the quality of service for mobile edge computing and path planning in the same reinforcement learning framework; 2) using a sigmoid-like function to depict the terminal users' demand to ensure a higher quality of service; 3) applying synthetic considerations of the terminal users' demand, risk and geometric distance in reinforcement learning reward matrix to ensure the quality of service, risk avoidance, and the cost-savings. Simulations have shown the effectiveness and feasibility of our platform, which can help advance related researches.
Abstract:Automated scene analysis has been a topic of great interest in computer vision and cognitive science. Recently, with the growth of crowd phenomena in the real world, crowded scene analysis has attracted much attention. However, the visual occlusions and ambiguities in crowded scenes, as well as the complex behaviors and scene semantics, make the analysis a challenging task. In the past few years, an increasing number of works on crowded scene analysis have been reported, covering different aspects including crowd motion pattern learning, crowd behavior and activity analysis, and anomaly detection in crowds. This paper surveys the state-of-the-art techniques on this topic. We first provide the background knowledge and the available features related to crowded scenes. Then, existing models, popular algorithms, evaluation protocols, as well as system performance are provided corresponding to different aspects of crowded scene analysis. We also outline the available datasets for performance evaluation. Finally, some research problems and promising future directions are presented with discussions.