Laboratory of Ocean acoustics and Remote Sensing, Institute of Oceanography, Ministry of Natural Resources, Xiamen, Fujian, China
Abstract:The dual-channel sound speed profiles of the Chukchi Plateau and the Canadian Basin have become current research hotspots due to their excellent low-frequency sound signal propagation ability. Previous research has mainly focused on using sound propagation theory to explain the changes in sound signal energy. This article is mainly based on the theory of normal modes to study the fine structure of low-frequency wide-band sound propagation dispersion under dual-channel sound speed profiles. In this paper, the problem of the intersection of normal mode dispersion curves caused by the dual-channel sound speed profile (SSP) has been explained, the blocking effect of seabed terrain changes on dispersion structures has been analyzed, and the normal modes has been separated by using modified warping operator. The above research results have been verified through a long-range seismic exploration experiment at the Chukchi Plateau. At the same time, based on the acoustic signal characteristics in this environment, two methods for estimating the distance of sound sources have been proposed, and the experiment data at sea has also verified these two methods.
Abstract:In point cloud analysis tasks, the existing local feature aggregation descriptors (LFAD) are unable to fully utilize information in the neighborhood of central points. Previous methods rely solely on Euclidean distance to constrain the local aggregation process, which can be easily affected by abnormal points and cannot adequately fit with the original geometry of the point cloud. We believe that fine-grained geometric information (FGGI) is significant for the aggregation of local features. Therefore, we propose a gradient-based local attention module, termed as Gradient Attention Module (GAM), to address the aforementioned problem. Our proposed GAM simplifies the process that extracts gradient information in the neighborhood and uses the Zenith Angle matrix and Azimuth Angle matrix as explicit representation, which accelerates the module by 35X. Comprehensive experiments were conducted on five benchmark datasets to demonstrate the effectiveness and generalization capability of the proposed GAM for 3D point cloud analysis. Especially on S3DIS dataset, GAM achieves the best performance among current point-based models with mIoU/OA/mAcc of 74.4%/90.6%/83.2%, respectively.