INRIA Lille - Nord Europe, LIFL
Abstract:Black box discrete optimization (BBDO) appears in wide range of engineering tasks. Evolutionary or other BBDO approaches have been applied, aiming at automating necessary tuning of system parameters, such as hyper parameter tuning of machine learning based systems when being installed for a specific task. However, automation is often jeopardized by the need of strategy parameter tuning for BBDO algorithms. An expert with the domain knowledge must undergo time-consuming strategy parameter tuning. This paper proposes a parameterless BBDO algorithm based on information geometric optimization, a recent framework for black box optimization using stochastic natural gradient. Inspired by some theoretical implications, we develop an adaptation mechanism for strategy parameters of the stochastic natural gradient method for discrete search domains. The proposed algorithm is evaluated on commonly used test problems. It is further extended to two examples of simultaneous optimization of the hyper parameters and the connection weights of deep learning models, leading to a faster optimization than the existing approaches without any effort of parameter tuning.
Abstract:This paper proposes a series of new approaches to improve Generative Adversarial Network (GAN) for conditional image synthesis and we name the proposed model as ArtGAN. One of the key innovation of ArtGAN is that, the gradient of the loss function w.r.t. the label (randomly assigned to each generated image) is back-propagated from the categorical discriminator to the generator. With the feedback from the label information, the generator is able to learn more efficiently and generate image with better quality. Inspired by recent works, an autoencoder is incorporated into the categorical discriminator for additional complementary information. Last but not least, we introduce a novel strategy to improve the image quality. In the experiments, we evaluate ArtGAN on CIFAR-10 and STL-10 via ablation studies. The empirical results showed that our proposed model outperforms the state-of-the-art results on CIFAR-10 in terms of Inception score. Qualitatively, we demonstrate that ArtGAN is able to generate plausible-looking images on Oxford-102 and CUB-200, as well as able to draw realistic artworks based on style, artist, and genre. The source code and models are available at: https://github.com/cs-chan/ArtGAN
Abstract:This work studies the behavior of three elitist multi- and many-objective evolutionary algorithms generating a high-resolution approximation of the Pareto optimal set. Several search-assessment indicators are defined to trace the dynamics of survival selection and measure the ability to simultaneously keep optimal solutions and discover new ones under different population sizes, set as a fraction of the size of the Pareto optimal set.