Abstract:Existing benchmarks do not test Large Multimodal Models (LMMs) on their interactive intelligence with human users which is vital for developing general-purpose AI assistants. We design InterFeedback, an interactive framework, which can be applied to any LMM and dataset to assess this ability autonomously. On top of this, we introduce InterFeedback-Bench which evaluates interactive intelligence using two representative datasets, MMMU-Pro and MathVerse, to test 10 different open-source LMMs. Additionally, we present InterFeedback-Human, a newly collected dataset of 120 cases designed for manually testing interactive performance in leading models such as OpenAI-o1 and Claude-3.5-Sonnet. Our evaluation results show that even state-of-the-art LMM (like OpenAI-o1) can correct their results through human feedback less than 50%. Our findings point to the need for methods that can enhance the LMMs' capability to interpret and benefit from feedback.
Abstract:Current GUI agents have achieved outstanding performance in GUI element grounding. However, planning remains highly challenging, especially due to sensitivity to the initial state of the environment. Specifically, slight differences in the initial state-such as the target software not being open or the interface not being in its default state-often lead to planning errors. This issue is widespread in real user scenarios, but existing benchmarks fail to evaluate it. In this paper, we present WorldGUI, a novel GUI benchmark that designs GUI tasks with various initial states to simulate real computer-user interactions. The benchmark spans a wide range of tasks across 10 popular software applications, including PowerPoint, VSCode, and Adobe Acrobat. In addition, to address the challenges of dynamic GUI automation tasks, we propose GUI-Thinker, a holistic framework, leveraging a critique mechanism, that effectively manages the unpredictability and complexity of GUI interactions. Experimental results demonstrate that GUI-Thinker significantly outperforms Claude-3.5 (Computer Use) by 14.9% in success rate on WorldGUI tasks. This improvement underscores the effectiveness of our critical-thinking-based framework in enhancing GUI automation.
Abstract:Question answering, asking, and assessment are three innate human traits crucial for understanding the world and acquiring knowledge. By enhancing these capabilities, humans can more effectively utilize data, leading to better comprehension and learning outcomes. However, current Multimodal Large Language Models (MLLMs) primarily focus on question answering, often neglecting the full potential of questioning and assessment skills. In this study, we introduce LOVA3, an innovative framework named ``Learning tO Visual Question Answering, Asking and Assessment,'' designed to equip MLLMs with these additional capabilities. Our approach involves the creation of two supplementary training tasks GenQA and EvalQA, aiming at fostering the skills of asking and assessing questions in the context of images. To develop the questioning ability, we compile a comprehensive set of multimodal foundational tasks. For assessment, we introduce a new benchmark called EvalQABench, comprising 64,000 training samples (split evenly between positive and negative samples) and 5,000 testing samples. We posit that enhancing MLLMs with the capabilities to answer, ask, and assess questions will improve their multimodal comprehension and lead to better performance. We validate our hypothesis by training an MLLM using the LOVA3 framework and testing it on 10 multimodal benchmarks. The results demonstrate consistent performance improvements, thereby confirming the efficacy of our approach.
Abstract:Large Language Models (LLMs) excel in understanding human instructions, driving the development of Multimodal LLMs (MLLMs) with instruction tuning. However, acquiring high-quality multimodal instruction tuning data poses a significant challenge. Previous approaches relying on GPT-4 for data generation proved expensive and exhibited unsatisfactory performance for certain tasks. To solve this, we present Genixer, an innovative data generation pipeline producing high-quality multimodal instruction tuning data for various tasks. Genixer collects datasets for ten prevalent multimodal tasks and designs instruction templates to transform these datasets into instruction-tuning data. It then trains pretrained MLLMs to generate task-specific instruction data and proposes an effective data filtering strategy to ensure high quality. To evaluate Genixer, a base MLLM model, Kakapo, is built and achieves SoTA performance in image captioning and visual question answering (VQA) tasks across multiple datasets. Experimental results show that filtered data from Genixer continually improves Kakapo for image captioning and VQA tasks. For the SoTA Shikra MLLM model on the image-region-related tasks, e.g., region caption and detection, Genixer also successfully generates corresponding data and improves its performance. Genixer opens avenues for generating high-quality multimodal instruction data for diverse tasks, enabling innovative applications across domains. The code and models will be released soon.
Abstract:Pre-trained vision transformers have strong representation benefits to various downstream tasks. Recently, many parameter-efficient fine-tuning (PEFT) methods have been proposed, and their experiments demonstrate that tuning only 1% of extra parameters could surpass full fine-tuning in low-data resource scenarios. However, these methods overlook the task-specific information when fine-tuning diverse downstream tasks. In this paper, we propose a simple yet effective method called "Salient Channel Tuning" (SCT) to leverage the task-specific information by forwarding the model with the task images to select partial channels in a feature map that enables us to tune only 1/8 channels leading to significantly lower parameter costs. Experiments outperform full fine-tuning on 18 out of 19 tasks in the VTAB-1K benchmark by adding only 0.11M parameters of the ViT-B, which is 780$\times$ fewer than its full fine-tuning counterpart. Furthermore, experiments on domain generalization and few-shot learning surpass other PEFT methods with lower parameter costs, demonstrating our proposed tuning technique's strong capability and effectiveness in the low-data regime.