Abstract:A new multimodal biometric database designed and acquired within the framework of the European BioSecure Network of Excellence is presented. It is comprised of more than 600 individuals acquired simultaneously in three scenarios: 1) over the Internet, 2) in an office environment with desktop PC, and 3) in indoor/outdoor environments with mobile portable hardware. The three scenarios include a common part of audio/video data. Also, signature and fingerprint data have been acquired both with desktop PC and mobile portable hardware. Additionally, hand and iris data were acquired in the second scenario using desktop PC. Acquisition has been conducted by 11 European institutions. Additional features of the BioSecure Multimodal Database (BMDB) are: two acquisition sessions, several sensors in certain modalities, balanced gender and age distributions, multimodal realistic scenarios with simple and quick tasks per modality, cross-European diversity, availability of demographic data, and compatibility with other multimodal databases. The novel acquisition conditions of the BMDB allow us to perform new challenging research and evaluation of either monomodal or multimodal biometric systems, as in the recent BioSecure Multimodal Evaluation campaign. A description of this campaign including baseline results of individual modalities from the new database is also given. The database is expected to be available for research purposes through the BioSecure Association during 2008
Abstract:Automatically verifying the identity of a person by means of biometrics is an important application in day-to-day activities such as accessing banking services and security control in airports. To increase the system reliability, several biometric devices are often used. Such a combined system is known as a multimodal biometric system. This paper reports a benchmarking study carried out within the framework of the BioSecure DS2 (Access Control) evaluation campaign organized by the University of Surrey, involving face, fingerprint, and iris biometrics for person authentication, targeting the application of physical access control in a medium-size establishment with some 500 persons. While multimodal biometrics is a well-investigated subject, there exists no benchmark for a fusion algorithm comparison. Working towards this goal, we designed two sets of experiments: quality-dependent and cost-sensitive evaluation. The quality-dependent evaluation aims at assessing how well fusion algorithms can perform under changing quality of raw images principally due to change of devices. The cost-sensitive evaluation, on the other hand, investigates how well a fusion algorithm can perform given restricted computation and in the presence of software and hardware failures, resulting in errors such as failure-to-acquire and failure-to-match. Since multiple capturing devices are available, a fusion algorithm should be able to handle this nonideal but nevertheless realistic scenario. In both evaluations, each fusion algorithm is provided with scores from each biometric comparison subsystem as well as the quality measures of both template and query data. The response to the call of the campaign proved very encouraging, with the submission of 22 fusion systems. To the best of our knowledge, this is the first attempt to benchmark quality-based multimodal fusion algorithms.
Abstract:Reliable and exact assessment of visibility is essential for safe air traffic. In order to overcome the drawbacks of the currently subjective reports from human observers, we present an approach to automatically derive visibility measures by means of image processing. It first exploits image based estimation of the atmospheric transmission describing the portion of the light that is not scattered by atmospheric phenomena (e.g., haze, fog, smoke) and reaches the camera. Once the atmospheric transmission is estimated, a 3D representation of the vicinity (digital surface model: DMS) is used to compute depth measurements for the haze-free pixels and then derive a global visibility estimation for the airport. Results on foggy images demonstrate the validity of the proposed method.
Abstract:In air traffic management (ATM) all necessary operations (tactical planing, sector configuration, required staffing, runway configuration, routing of approaching aircrafts) rely on accurate measurements and predictions of the current weather situation. An essential basis of information is delivered by weather radar images (WXR), which, unfortunately, exhibit a vast amount of disturbances. Thus, the improvement of these datasets is the key factor for more accurate predictions of weather phenomena and weather conditions. Image processing methods based on texture analysis and geometric operators allow to identify regions including artefacts as well as zones of missing information. Correction of these zones is implemented by exploiting multi-spectral satellite data (Meteosat Second Generation). Results prove that the proposed system for artefact detection and data correction significantly improves the quality of WXR data and, thus, enables more reliable weather now- and forecast leading to increased ATM safety.