Abstract:We propose a novel attention based deep learning architecture for visual question answering task (VQA). Given an image and an image related natural language question, VQA generates the natural language answer for the question. Generating the correct answers requires the model's attention to focus on the regions corresponding to the question, because different questions inquire about the attributes of different image regions. We introduce an attention based configurable convolutional neural network (ABC-CNN) to learn such question-guided attention. ABC-CNN determines an attention map for an image-question pair by convolving the image feature map with configurable convolutional kernels derived from the question's semantics. We evaluate the ABC-CNN architecture on three benchmark VQA datasets: Toronto COCO-QA, DAQUAR, and VQA dataset. ABC-CNN model achieves significant improvements over state-of-the-art methods on these datasets. The question-guided attention generated by ABC-CNN is also shown to reflect the regions that are highly relevant to the questions.
Abstract:In this paper, we present the mQA model, which is able to answer questions about the content of an image. The answer can be a sentence, a phrase or a single word. Our model contains four components: a Long Short-Term Memory (LSTM) to extract the question representation, a Convolutional Neural Network (CNN) to extract the visual representation, an LSTM for storing the linguistic context in an answer, and a fusing component to combine the information from the first three components and generate the answer. We construct a Freestyle Multilingual Image Question Answering (FM-IQA) dataset to train and evaluate our mQA model. It contains over 150,000 images and 310,000 freestyle Chinese question-answer pairs and their English translations. The quality of the generated answers of our mQA model on this dataset is evaluated by human judges through a Turing Test. Specifically, we mix the answers provided by humans and our model. The human judges need to distinguish our model from the human. They will also provide a score (i.e. 0, 1, 2, the larger the better) indicating the quality of the answer. We propose strategies to monitor the quality of this evaluation process. The experiments show that in 64.7% of cases, the human judges cannot distinguish our model from humans. The average score is 1.454 (1.918 for human). The details of this work, including the FM-IQA dataset, can be found on the project page: http://idl.baidu.com/FM-IQA.html