Abstract:Modern privacy regulations have spurred the evolution of machine unlearning, a technique enabling a trained model to efficiently forget specific training data. In prior unlearning methods, the concept of "data forgetting" is often interpreted and implemented as achieving zero classification accuracy on such data. Nevertheless, the authentic aim of machine unlearning is to achieve alignment between the unlearned model and the gold model, i.e., encouraging them to have identical classification accuracy. On the other hand, the gold model often exhibits non-zero classification accuracy due to its generalization ability. To achieve aligned data forgetting, we propose a Twin Machine Unlearning (TMU) approach, where a twin unlearning problem is defined corresponding to the original unlearning problem. Consequently, the generalization-label predictor trained on the twin problem can be transferred to the original problem, facilitating aligned data forgetting. Comprehensive empirical experiments illustrate that our approach significantly enhances the alignment between the unlearned model and the gold model.
Abstract:This paper focuses on jailbreaking attacks against large language models (LLMs), eliciting them to generate objectionable content in response to harmful user queries. Unlike previous LLM-jailbreaks that directly orient to LLMs, our approach begins by constructing a multimodal large language model (MLLM) through the incorporation of a visual module into the target LLM. Subsequently, we conduct an efficient MLLM-jailbreak to generate jailbreaking embeddings embJS. Finally, we convert the embJS into text space to facilitate the jailbreaking of the target LLM. Compared to direct LLM-jailbreaking, our approach is more efficient, as MLLMs are more vulnerable to jailbreaking than pure LLM. Additionally, to improve the attack success rate (ASR) of jailbreaking, we propose an image-text semantic matching scheme to identify a suitable initial input. Extensive experiments demonstrate that our approach surpasses current state-of-the-art methods in terms of both efficiency and effectiveness. Moreover, our approach exhibits superior cross-class jailbreaking capabilities.