Abstract:Estimating frequency-varying acoustic parameters is essential for enhancing immersive perception in realistic spatial audio creation. In this paper, we propose a unified framework that blindly estimates reverberation time (T60), direct-to-reverberant ratio (DRR), and clarity (C50) across 10 frequency bands using first-order Ambisonics (FOA) speech recordings as inputs. The proposed framework utilizes a novel feature named Spectro-Spatial Covariance Vector (SSCV), efficiently representing temporal, spectral as well as spatial information of the FOA signal. Our models significantly outperform existing single-channel methods with only spectral information, reducing estimation errors by more than half for all three acoustic parameters. Additionally, we introduce FOA-Conv3D, a novel back-end network for effectively utilising the SSCV feature with a 3D convolutional encoder. FOA-Conv3D outperforms the convolutional neural network (CNN) and recurrent convolutional neural network (CRNN) backends, achieving lower estimation errors and accounting for a higher proportion of variance (PoV) for all 3 acoustic parameters.
Abstract:The remarkable ability of humans to selectively focus on a target speaker in cocktail party scenarios is facilitated by binaural audio processing. In this paper, we present a binaural time-domain Target Speaker Extraction model based on the Filter-and-Sum Network (FaSNet). Inspired by human selective hearing, our proposed model introduces target speaker embedding into separators using a multi-head attention-based selective attention block. We also compared two binaural interaction approaches -- the cosine similarity of time-domain signals and inter-channel correlation in learned spectral representations. Our experimental results show that our proposed model outperforms monaural configurations and state-of-the-art multi-channel target speaker extraction models, achieving best-in-class performance with 18.52 dB SI-SDR, 19.12 dB SDR, and 3.05 PESQ scores under anechoic two-speaker test configurations.
Abstract:There is increasing interest in the use of the LEArnable Front-end (LEAF) in a variety of speech processing systems. However, there is a dearth of analyses of what is actually learnt and the relative importance of training the different components of the front-end. In this paper, we investigate this question on keyword spotting, speech-based emotion recognition and language identification tasks and find that the filters for spectral decomposition and the low pass filter used to estimate spectral energy variations exhibit no learning and the per-channel energy normalisation (PCEN) is the key component that is learnt. Following this, we explore the potential of adapting only the PCEN layer with a small amount of noisy data to enable it to learn appropriate dynamic range compression that better suits the noise conditions. This in turn enables a system trained on clean speech to work more accurately on noisy test data as demonstrated by the experimental results reported in this paper.
Abstract:Recently, Denoising Diffusion Probabilistic Models (DDPMs) have attained leading performances across a diverse range of generative tasks. However, in the field of speech synthesis, although DDPMs exhibit impressive performance, their long training duration and substantial inference costs hinder practical deployment. Existing approaches primarily focus on enhancing inference speed, while approaches to accelerate training a key factor in the costs associated with adding or customizing voices often necessitate complex modifications to the model, compromising their universal applicability. To address the aforementioned challenges, we propose an inquiry: is it possible to enhance the training/inference speed and performance of DDPMs by modifying the speech signal itself? In this paper, we double the training and inference speed of Speech DDPMs by simply redirecting the generative target to the wavelet domain. This method not only achieves comparable or superior performance to the original model in speech synthesis tasks but also demonstrates its versatility. By investigating and utilizing different wavelet bases, our approach proves effective not just in speech synthesis, but also in speech enhancement.