Abstract:RGB-based 3D pose estimation methods have been successful with the development of deep learning and the emergence of high-quality 3D pose datasets. However, most existing methods do not operate well for testing images whose distribution is far from that of training data. However, most existing methods do not operate well for testing images whose distribution is far from that of training data. This problem might be alleviated by involving diverse data during training, however it is non-trivial to collect such diverse data with corresponding labels (i.e. 3D pose). In this paper, we introduced an unsupervised domain adaptation framework for 3D pose estimation that utilizes the unlabeled data in addition to labeled data via masked image modeling (MIM) framework. Foreground-centric reconstruction and attention regularization are further proposed to increase the effectiveness of unlabeled data usage. Experiments are conducted on the various datasets in human and hand pose estimation tasks, especially using the cross-domain scenario. We demonstrated the effectiveness of ours by achieving the state-of-the-art accuracy on all datasets.
Abstract:RGB-based 3D hand pose estimation has been successful for decades thanks to large-scale databases and deep learning. However, the hand pose estimation network does not operate well for hand pose images whose characteristics are far different from the training data. This is caused by various factors such as illuminations, camera angles, diverse backgrounds in the input images, etc. Many existing methods tried to solve it by supplying additional large-scale unconstrained/target domain images to augment data space; however collecting such large-scale images takes a lot of labors. In this paper, we present a simple image-free domain generalization approach for the hand pose estimation framework that uses only source domain data. We try to manipulate the image features of the hand pose estimation network by adding the features from text descriptions using the CLIP (Contrastive Language-Image Pre-training) model. The manipulated image features are then exploited to train the hand pose estimation network via the contrastive learning framework. In experiments with STB and RHD datasets, our algorithm shows improved performance over the state-of-the-art domain generalization approaches.