Abstract:Deep learning has successfully solved a wide range of tasks in 2D vision as a dominant AI technique. Recently, deep learning on 3D point clouds is becoming increasingly popular for addressing various tasks in this field. Despite remarkable achievements, deep learning algorithms are vulnerable to adversarial attacks. These attacks are imperceptible to the human eye but can easily fool deep neural networks in the testing and deployment stage. To encourage future research, this survey summarizes the current progress on adversarial attack and defense techniques on point cloud classification. This paper first introduces the principles and characteristics of adversarial attacks and summarizes and analyzes the adversarial example generation methods in recent years. Besides, it classifies defense strategies as input transformation, data optimization, and deep model modification. Finally, it presents several challenging issues and future research directions in this domain.
Abstract:In this paper, we propose a novel motion-compensated frame rate up-conversion (MC-FRUC) algorithm. The proposed algorithm creates interpolated frames by first estimating motion vectors using unilateral (jointing forward and backward) and bilateral motion estimation. Then motion vectors are combined based on adaptive threshold, in order to creates high-quality interpolated frames and reduce block artifacts. Since motion-compensated frame interpolation along unilateral motion trajectories yields holes, a new algorithm is introduced to resolve this problem. The experimental results show that the quality of the interpolated frames using the proposed algorithm is much higher than the existing algorithms.
Abstract:Although 3D point cloud classification has recently been widely deployed in different application scenarios, it is still very vulnerable to adversarial attacks. This increases the importance of robust training of 3D models in the face of adversarial attacks. Based on our analysis on the performance of existing adversarial attacks, more adversarial perturbations are found in the mid and high-frequency components of input data. Therefore, by suppressing the high-frequency content in the training phase, the models robustness against adversarial examples is improved. Experiments showed that the proposed defense method decreases the success rate of six attacks on PointNet, PointNet++ ,, and DGCNN models. In particular, improvements are achieved with an average increase of classification accuracy by 3.8 % on drop100 attack and 4.26 % on drop200 attack compared to the state-of-the-art methods. The method also improves models accuracy on the original dataset compared to other available methods.
Abstract:Recent research has revealed that the security of deep neural networks that directly process 3D point clouds to classify objects can be threatened by adversarial samples. Although existing adversarial attack methods achieve high success rates, they do not restrict the point modifications enough to preserve the point cloud appearance. To overcome this shortcoming, two constraints are proposed. These include applying hard boundary constraints on the number of modified points and on the point perturbation norms. Due to the restrictive nature of the problem, the search space contains many local maxima. The proposed method addresses this issue by using a high step-size at the beginning of the algorithm to search the main surface of the point cloud fast and effectively. Then, in order to converge to the desired output, the step-size is gradually decreased. To evaluate the performance of the proposed method, it is run on the ModelNet40 and ScanObjectNN datasets by employing the state-of-the-art point cloud classification models; including PointNet, PointNet++, and DGCNN. The obtained results show that it can perform successful attacks and achieve state-of-the-art results by only a limited number of point modifications while preserving the appearance of the point cloud. Moreover, due to the effective search algorithm, it can perform successful attacks in just a few steps. Additionally, the proposed step-size scheduling algorithm shows an improvement of up to $14.5\%$ when adopted by other methods as well. The proposed method also performs effectively against popular defense methods.
Abstract:Deep neural networks have been shown to be vulnerable to adversarial examples deliberately constructed to misclassify victim models. As most adversarial examples have restricted their perturbations to $L_{p}$-norm, existing defense methods have focused on these types of perturbations and less attention has been paid to unrestricted adversarial examples; which can create more realistic attacks, able to deceive models without affecting human predictions. To address this problem, the proposed adversarial attack generates an unrestricted adversarial example with a limited number of parameters. The attack selects three points on the input image and based on their locations transforms the image into an adversarial example. By limiting the range of movement and location of these three points and using a discriminatory network, the proposed unrestricted adversarial example preserves the image appearance. Experimental results show that the proposed adversarial examples obtain an average success rate of 93.5% in terms of human evaluation on the MNIST and SVHN datasets. It also reduces the model accuracy by an average of 73% on six datasets MNIST, FMNIST, SVHN, CIFAR10, CIFAR100, and ImageNet. It should be noted that, in the case of attacks, lower accuracy in the victim model denotes a more successful attack. The adversarial train of the attack also improves model robustness against a randomly transformed image.