Department of Informatics, King's College London, U.K, causaLens Ltd., U.K
Abstract:Existing black box explainability tools for object detectors rely on multiple calls to the model, which prevents them from computing explanations in real time. In this paper we introduce IncX, an algorithm for real-time incremental approximations of explanations, based on linear transformations of saliency maps. We implement IncX on top of D-RISE, a state-of-the-art black-box explainability tool for object detectors. We show that IncX's explanations are comparable in quality to those of D-RISE, with insertion curves being within 8%, and are computed two orders of magnitude faster that D-RISE's explanations.
Abstract:Our work addresses a fundamental problem in the context of counterfactual inference for Markov Decision Processes (MDPs). Given an MDP path $\tau$, this kind of inference allows us to derive counterfactual paths $\tau'$ describing what-if versions of $\tau$ obtained under different action sequences than those observed in $\tau$. However, as the counterfactual states and actions deviate from the observed ones over time, the observation $\tau$ may no longer influence the counterfactual world, meaning that the analysis is no longer tailored to the individual observation, resulting in interventional outcomes rather than counterfactual ones. Even though this issue specifically affects the popular Gumbel-max structural causal model used for MDP counterfactuals, it has remained overlooked until now. In this work, we introduce a formal characterisation of influence based on comparing counterfactual and interventional distributions. We devise an algorithm to construct counterfactual models that automatically satisfy influence constraints. Leveraging such models, we derive counterfactual policies that are not just optimal for a given reward structure but also remain tailored to the observed path. Even though there is an unavoidable trade-off between policy optimality and strength of influence constraints, our experiments demonstrate that it is possible to derive (near-)optimal policies while remaining under the influence of the observation.
Abstract:We focus on explaining image classifiers, taking the work of Mothilal et al. [2021] (MMTS) as our point of departure. We observe that, although MMTS claim to be using the definition of explanation proposed by Halpern [2016], they do not quite do so. Roughly speaking, Halpern's definition has a necessity clause and a sufficiency clause. MMTS replace the necessity clause by a requirement that, as we show, implies it. Halpern's definition also allows agents to restrict the set of options considered. While these difference may seem minor, as we show, they can have a nontrivial impact on explanations. We also show that, essentially without change, Halpern's definition can handle two issues that have proved difficult for other approaches: explanations of absence (when, for example, an image classifier for tumors outputs "no tumor") and explanations of rare events (such as tumors).
Abstract:Existing tools for explaining the output of image classifiers can be divided into white-box, which rely on access to the model internals, and black-box, agnostic to the model. As the usage of AI in the medical domain grows, so too does the usage of explainability tools. Existing work on medical image explanations focuses on white-box tools, such as gradcam. However, there are clear advantages to switching to a black-box tool, including the ability to use it with any classifier and the wide selection of black-box tools available. On standard images, black-box tools are as precise as white-box. In this paper we compare the performance of several black-box methods against gradcam on a brain cancer MRI dataset. We demonstrate that most black-box tools are not suitable for explaining medical image classifications and present a detailed analysis of the reasons for their shortcomings. We also show that one black-box tool, a causal explainability-based rex, performs as well as \gradcam.
Abstract:In this paper, we propose a new black-box explainability algorithm and tool, YO-ReX, for efficient explanation of the outputs of object detectors. The new algorithm computes explanations for all objects detected in the image simultaneously. Hence, compared to the baseline, the new algorithm reduces the number of queries by a factor of 10X for the case of ten detected objects. The speedup increases further with with the number of objects. Our experimental results demonstrate that YO-ReX can explain the outputs of YOLO with a negligible overhead over the running time of YOLO. We also demonstrate similar results for explaining SSD and Faster R-CNN. The speedup is achieved by avoiding backtracking by combining aggressive pruning with a causal analysis.
Abstract:Policies trained via reinforcement learning (RL) are often very complex even for simple tasks. In an episode with n time steps, a policy will make n decisions on actions to take, many of which may appear non-intuitive to the observer. Moreover, it is not clear which of these decisions directly contribute towards achieving the reward and how significant their contribution is. Given a trained policy, we propose a black-box method based on statistical covariance estimation that clusters the states of the environment and ranks each cluster according to the importance of decisions made in its states. We compare our measure against a previous statistical fault localization based ranking procedure.
Abstract:Existing explanation tools for image classifiers usually give only one single explanation for an image. For many images, however, both humans and image classifiers accept more than one explanation for the image label. Thus, restricting the number of explanations to just one severely limits the insight into the behavior of the classifier. In this paper, we describe an algorithm and a tool, REX, for computing multiple explanations of the output of a black-box image classifier for a given image. Our algorithm uses a principled approach based on causal theory. We analyse its theoretical complexity and provide experimental results showing that REX finds multiple explanations on 7 times more images than the previous work on the ImageNet-mini benchmark.
Abstract:This paper proposes a method for measuring fairness through equality of effort by applying algorithmic recourse through minimal interventions. Equality of effort is a property that can be quantified at both the individual and the group level. It answers the counterfactual question: what is the minimal cost for a protected individual or the average minimal cost for a protected group of individuals to reverse the outcome computed by an automated system? Algorithmic recourse increases the flexibility and applicability of the notion of equal effort: it overcomes its previous limitations by reconciling multiple treatment variables, introducing feasibility and plausibility constraints, and integrating the actual relative costs of interventions. We extend the existing definition of equality of effort and present an algorithm for its assessment via algorithmic recourse. We validate our approach both on synthetic data and on the German credit dataset.
Abstract:We describe the results of applying causal discovery methods on the data from a multi-site clinical trial, on the Treatment of Preserved Cardiac Function Heart Failure with an Aldosterone Antagonist (TOPCAT). The trial was inconclusive, with no clear benefits consistently shown for the whole cohort. However, there were questions regarding the reliability of the diagnosis and treatment protocol for a geographic subgroup of the cohort. With the inclusion of medical context in the form of domain knowledge, causal discovery is used to demonstrate regional discrepancies and to frame the regional transportability of the results. Furthermore, we show that, globally and especially for some subgroups, the treatment has significant causal effects, thus offering a more refined view of the trial results.
Abstract:As autonomous systems rapidly become ubiquitous, there is a growing need for a legal and regulatory framework to address when and how such a system harms someone. There have been several attempts within the philosophy literature to define harm, but none of them has proven capable of dealing with with the many examples that have been presented, leading some to suggest that the notion of harm should be abandoned and "replaced by more well-behaved notions". As harm is generally something that is caused, most of these definitions have involved causality at some level. Yet surprisingly, none of them makes use of causal models and the definitions of actual causality that they can express. In this paper we formally define a qualitative notion of harm that uses causal models and is based on a well-known definition of actual causality (Halpern, 2016). The key novelty of our definition is that it is based on contrastive causation and uses a default utility to which the utility of actual outcomes is compared. We show that our definition is able to handle the examples from the literature, and illustrate its importance for reasoning about situations involving autonomous systems.