Abstract:Humans can accurately determine whether the object in hand has slipped or not by visual and tactile perception. However, it is still a challenge for robots to detect in-hand object slip through visuo-tactile fusion. To address this issue, a novel visuo-tactile fusion deep neural network is proposed to detect slip, which is a time-dependent continuous action. By using the multi-scale temporal convolution network (MS-TCN) to extract the temporal features of visual and tactile data, the slip can be detected effectively. In this paper, a 7-dregree-of-freedom (7-DoF) robot manipulator equipped with a camera and a tactile sensor is used for data collection on 50 daily objects with different shapes, materials, sizes, and weights. Therefore, a dataset is built, where the grasping data of 40 objects and 10 objects are used for network training and testing, respectively. The detection accuracy is 96.96% based on the proposed model. Also, the proposed model is compared with a visuo-tactile fusion deep neural network (DNN) based on long short-term memory network (LSTM) on the collected dataset and a public dataset using the GelSight tactile sensor. The results demonstrate that the proposed model performs better on both dataset. The proposed model can help robots grasp daily objects reliably. In addition, it can be used in grasping force control, grasping policy generation and dexterous manipulation.
Abstract:Modern IT system operation demands the integration of system software and hardware metrics. As a result, it generates a massive amount of data, which can be potentially used to make data-driven operational decisions. In the basic form, the decision model needs to monitor a large set of machine data, such as CPU utilization, allocated memory, disk and network latency, and predicts the system metrics to prevent performance degradation. Nevertheless, building an effective prediction model in this scenario is rather challenging as the model has to accurately capture the long-range coupling dependency in the Multivariate Time-Series (MTS). Moreover, this model needs to have low computational complexity and can scale efficiently to the dimension of data available. In this paper, we propose a highly efficient model named HigeNet to predict the long-time sequence time series. We have deployed the HigeNet on production in the D-matrix platform. We also provide offline evaluations on several publicly available datasets as well as one online dataset to demonstrate the model's efficacy. The extensive experiments show that training time, resource usage and accuracy of the model are found to be significantly better than five state-of-the-art competing models.