Abstract:Artificial Intelligence (AI) is revolutionizing emergency medicine by enhancing diagnostic processes and improving patient outcomes. This article provides a review of the current applications of AI in emergency imaging studies, focusing on the last five years of advancements. AI technologies, particularly machine learning and deep learning, are pivotal in interpreting complex imaging data, offering rapid, accurate diagnoses and potentially surpassing traditional diagnostic methods. Studies highlighted within the article demonstrate AI's capabilities in accurately detecting conditions such as fractures, pneumothorax, and pulmonary diseases from various imaging modalities including X-rays, CT scans, and MRIs. Furthermore, AI's ability to predict clinical outcomes like mechanical ventilation needs illustrates its potential in crisis resource optimization. Despite these advancements, the integration of AI into clinical practice presents challenges such as data privacy, algorithmic bias, and the need for extensive validation across diverse settings. This review underscores the transformative potential of AI in emergency settings, advocating for a future where AI and clinical expertise synergize to elevate patient care standards.
Abstract:The impression section of a radiology report summarizes important radiology findings and plays a critical role in communicating these findings to physicians. However, the preparation of these summaries is time-consuming and error-prone for radiologists. Recently, numerous models for radiology report summarization have been developed. Nevertheless, there is currently no model that can summarize these reports in multiple languages. Such a model could greatly improve future research and the development of Deep Learning models that incorporate data from patients with different ethnic backgrounds. In this study, the generation of radiology impressions in different languages was automated by fine-tuning a model, publicly available, based on a multilingual text-to-text Transformer to summarize findings available in English, Portuguese, and German radiology reports. In a blind test, two board-certified radiologists indicated that for at least 70% of the system-generated summaries, the quality matched or exceeded the corresponding human-written summaries, suggesting substantial clinical reliability. Furthermore, this study showed that the multilingual model outperformed other models that specialized in summarizing radiology reports in only one language, as well as models that were not specifically designed for summarizing radiology reports, such as ChatGPT.