Abstract:Recent single-view 3D generative methods have made significant advancements by leveraging knowledge distilled from extensive 3D object datasets. However, challenges persist in the synthesis of 3D scenes from a single view, primarily due to the complexity of real-world environments and the limited availability of high-quality prior resources. In this paper, we introduce a novel approach called Pano2Room, designed to automatically reconstruct high-quality 3D indoor scenes from a single panoramic image. These panoramic images can be easily generated using a panoramic RGBD inpainter from captures at a single location with any camera. The key idea is to initially construct a preliminary mesh from the input panorama, and iteratively refine this mesh using a panoramic RGBD inpainter while collecting photo-realistic 3D-consistent pseudo novel views. Finally, the refined mesh is converted into a 3D Gaussian Splatting field and trained with the collected pseudo novel views. This pipeline enables the reconstruction of real-world 3D scenes, even in the presence of large occlusions, and facilitates the synthesis of photo-realistic novel views with detailed geometry. Extensive qualitative and quantitative experiments have been conducted to validate the superiority of our method in single-panorama indoor novel synthesis compared to the state-of-the-art. Our code and data are available at \url{https://github.com/TrickyGo/Pano2Room}.
Abstract:How to automatically transfer the dynamic texture of a given video to the target still image is a challenging and ongoing problem. In this paper, we propose to handle this task via a simple yet effective model that utilizes both PatchMatch and Transformers. The key idea is to decompose the task of dynamic texture transfer into two stages, where the start frame of the target video with the desired dynamic texture is synthesized in the first stage via a distance map guided texture transfer module based on the PatchMatch algorithm. Then, in the second stage, the synthesized image is decomposed into structure-agnostic patches, according to which their corresponding subsequent patches can be predicted by exploiting the powerful capability of Transformers equipped with VQ-VAE for processing long discrete sequences. After getting all those patches, we apply a Gaussian weighted average merging strategy to smoothly assemble them into each frame of the target stylized video. Experimental results demonstrate the effectiveness and superiority of the proposed method in dynamic texture transfer compared to the state of the art.
Abstract:Single-image novel view synthesis is a challenging and ongoing problem that aims to generate an infinite number of consistent views from a single input image. Although significant efforts have been made to advance the quality of generated novel views, less attention has been paid to the expansion of the underlying scene representation, which is crucial to the generation of realistic novel view images. This paper proposes SinMPI, a novel method that uses an expanded multiplane image (MPI) as the 3D scene representation to significantly expand the perspective range of MPI and generate high-quality novel views from a large multiplane space. The key idea of our method is to use Stable Diffusion to generate out-of-view contents, project all scene contents into an expanded multiplane image according to depths predicted by monocular depth estimators, and then optimize the multiplane image under the supervision of pseudo multi-view data generated by a depth-aware warping and inpainting module. Both qualitative and quantitative experiments have been conducted to validate the superiority of our method to the state of the art. Our code and data are available at https://github.com/TrickyGo/SinMPI.
Abstract:Text logo design heavily relies on the creativity and expertise of professional designers, in which arranging element layouts is one of the most important procedures. However, few attention has been paid to this task which needs to take many factors (e.g., fonts, linguistics, topics, etc.) into consideration. In this paper, we propose a content-aware layout generation network which takes glyph images and their corresponding text as input and synthesizes aesthetic layouts for them automatically. Specifically, we develop a dual-discriminator module, including a sequence discriminator and an image discriminator, to evaluate both the character placing trajectories and rendered shapes of synthesized text logos, respectively. Furthermore, we fuse the information of linguistics from texts and visual semantics from glyphs to guide layout prediction, which both play important roles in professional layout design. To train and evaluate our approach, we construct a dataset named as TextLogo3K, consisting of about 3,500 text logo images and their pixel-level annotations. Experimental studies on this dataset demonstrate the effectiveness of our approach for synthesizing visually-pleasing text logos and verify its superiority against the state of the art.
Abstract:Text style transfer is a hot issue in recent natural language processing,which mainly studies the text to adapt to different specific situations, audiences and purposes by making some changes. The style of the text usually includes many aspects such as morphology, grammar, emotion, complexity, fluency, tense, tone and so on. In the traditional text style transfer model, the text style is generally relied on by experts knowledge and hand-designed rules, but with the application of deep learning in the field of natural language processing, the text style transfer method based on deep learning Started to be heavily researched. In recent years, text style transfer is becoming a hot issue in natural language processing research. This article summarizes the research on the text style transfer model based on deep learning in recent years, and summarizes, analyzes and compares the main research directions and progress. In addition, the article also introduces public data sets and evaluation indicators commonly used for text style transfer. Finally, the existing characteristics of the text style transfer model are summarized, and the future development trend of the text style transfer model based on deep learning is analyzed and forecasted.